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» We consider a logic £ here as a triple (£, =,, <) where L is a
mapping which gives, to each set of signature, the corresponding set of
L-formulas in the signature, = is the model relation for the logic,
and </ the elementary substructure relation associated to the logic L.

> We assume that (L, =,, <) satisfies all the natural properties
which are expected for such a logic.

» The compactness number of the logic £ is defined by:

en(L) := min({x € Card : for any L-theory T, T is satisfiable <
all So € [T]<" are satisfiable} U {cc0}).

» The weak compactness spectrum of L is the class:

WCS(L) := {x € Card : for any L-theory T of signature of size < &,
T is satisfiable < Sy € [T]<" are satisfiable} U {o0}.

> The weak compactness number of L is:

wen(L) := min(WCS(L)).
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» The compactness number of the logic £ is defined by:

en(L) := min({x € Card : for any L-theory T, T is satisfiable <
all So € [T]<" are satisfiable} U {c0}).

» The weak compactness spectrum of L is the class:

WCS(L) := {x € Card : for any L-theory T of signature of size < &,
T is satisfiable < Sp € [T]<" are satisfiable} U {o0}.

> The weak compactness number of L is:
wen(L) := min(WCS(L)).

Lemma 1. {wm(L)} U {k : kK > (L)} C WCS(L). @
WCS(L)
0 wen(L) 0
° eeeiaas MNP o
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Theorem 2. (classical) (1) & =toen(L,w) < K is weakly compact.
(2) k=m(Lyw) & K is strongly compact. @

» L' denotes the (full) second-order logic and L}, its infinitary logic
extension.

Theorem 3. ([Magidor 1971]) (1) & =en(L},) & & is extendible.
(2) If en(LY) < oo then en(LM) is the least extendible cardinal. [0

» k is extendible if, for any n > 0, there is a ( and j s.t.
. <
J: Viern =6 V.
» What is the x in terms of the characterizations above ?

weakly compact cardinals X

strongly compact cardinals extendible cardinals

> (Does = twen(L}!, )characterize a large cardinal 7 If so, what is
the large cardinal 7)
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» The following notion of weak extendibility is the solution to the
equation. We can also nicely place the weak extendibility in the
hierarchy of small large cardinals.

> A cardinal  is weakly extendible & @k =2<"and, @ for
any 0 >k, and M < Vy with k +1 C M, | M| = &, there are 0 and
Jwith j - M <, V3.

Notation: If we write j : M =5, N then M and N are transitive
€ - (set or class)-structures and crit(j) = k. If we write j: M <, N
then M and N are not necessarily transitive €-structures but
k+1C M, N.

Theorem 4. ([o0]) (1) k=twen(Ll,) & & is weakly extendible.

(2) Ifroen(LM) < oo, then roen(LM) is the least weakly extendible
cardinal.



Weakly extendible cardinals in the hierarchy of small large cardinals Weky et (8/17)

» A cardinal & is said to be strongly unfoldable (Villaveces) if k =
2<% and, for any ordinal A > k and any transitive model M of
ZFC” st. k€ M, "M C M and | M| = k, there is a transitive
N D Vy with j : M S5, N and j(x) > . Here, ZFC~ denotes the
axiom system ZFC without the Power Set Axiom.

> P. Liicke [Liicke 2022] proved that the strong unfoldability is
equivalent to the shrewdness, a natural strengthening of the total
indescribability which was introduced by M. Rathjen.

» An inaccessible cardinal  is strongly uplifting (Hamkins and
Johnstone) if, for every A C k there are arbitrarily large regular

6§ > k such that (V,, €, A) < (Vp, € A) for some A C Vj.

> Any subtle cardinal is a stationary limit of strongly uplifting
cardinals ( [Hamkins-Johnstone 2017] ).
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Weakly extendible cardinals in the hierarchy of small large cardinals (3/4) Wekyecedie (10/17)

Theorem 5.([c0]) (1) If kis weakly extendible, then there is a
weakly compact A > k. On the other hand, strong unfoldability
of k does not imply the existence of inaccessible A > .

(2) Assume k is weakly extendible and v is the first inaccessible
cardinal above x (which exists by (1)).
Then V,, =k is strongly unfoldable but not weakly extendible”.
Also V), =“there is no inaccessible cardinal above x”. In particular,
ZFC + "there is a weakly extendible cardinal” proves
consis(""ZFC + "there is a strongly unfoldable cardinal 7).

(3) ([Boney et al.] Proposition 4.8 + Theorem 4.) If k is a
strongly uplifting cardinal then x is weakly extendible and « is a
stationary limit of weakly extendible cardinals.

(4) If kis a subtle cardinal, then « is a stationary limit of weakly
extendible cardinals. I}
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Large cardinal characterizations of the weak compactness of many more logics ek ettt (12/17)

> (The proof of) Theorem 4 has the following generalizations:

» Let us call a logic £ finitary if the set of free variables in any £-
formula is finite, the set of all £-formulas of given signature S of
cardinality < k, for an infinite x has size < k, and, for any infinite
ordinal 8 and p € V), Vy E“y is an L-formula” if and only if ¢
is (really) an L-formula.

» For N = ZFC™ and a structure 2 € N s.t. the index sets of the
components of 2 are all included in N also as subsets in N, let
AN = A | N.

» For alogic £, if Niss.t. N |=ZC™ and N contains all parameters
needed to define £, we shall say that N is L-truthful if, for all
structures 2 as above (in connection with this N), N =“2 =, ¢”
is equivalent to AN =, .



Large cardinal characterizations of the weak compactness of many more logics (2/3) ey et (13/17)

Theorem 6. ([oco]) (1) Suppose that £ is a finitary logic s.t.
@®  Vj for all regular uncountable 6 is L-truthful; and
@ " € is well-founded" is expressible by a formula ¢7. in L.
Then a cardinal & is weakly £-compact (i.e. K € WCS(L)) <
for any regular 0 > kand M < Vyst. k+1CM, |M|=x&,

thereare j, Nst. x+1CN, j: M <N,
j(x) > min(On" \ sup(j”k)), and N is L-truthful.

(2) Suppose that £* is a logic obtained from a finitary logic £
which satisfies M and @ above, by extending £ by taking the
closure of the set of £ formulas w.r.t. infinitary conjunction and
disjunction of set of formulas of size <« and first order logical
operations. Then k is weakly £*-compact <
® forany regular @ > kand M < Vyst. k+1C M, |M|=x,

there are j, Nst. j: M <. N, and N is L-truthful.



Large cardinal characterizations of the weak compactness of many more logics (3/3) ey etes (14/17)

Theorem 6. ([oco]) (1) Suppose that £ is a finitary logic s.t.
@®  Vj for all regular uncountable 6 is L-truthful; and

@ " € is well-founded" is expressible by a formula ¢7. in L.
Then ...

(2) Suppose that £* is a logic obtained from a finitary logic £
which satisfies @ and @ above, by extending £ by taking the
closure of the set of £ formulas w.r.t. infinitary conjunction and
disjunction of set of formulas of size <« and first order logical
operations. Then k is weakly £*-compact <

® foranyregular > kand M < Vyst. k+1CM, |M|=x,
there are j, Nsit. j: M <, N, and N is L-truthful.

(3) Suppose that £ is a finitary logic satisfying @ and @ in (1).
Then tocn(L) is the least cardinal & satisfying 3. [



Weak compactness of stationary logic Wely ecendte (15/17)

» LRIl denotes the weak second-order logic in which second order
variables are interpreted as countable subsets of the underlying set
of the structure in consideration.

> E?,_f’a’t” is the weak second-order logic with stationarity quantifier:
A = statx p(x,...) &
{ac [ | M : A ¢(a,...)} is stationary in [ |2A] ]No.

» £ is as above but without second-order existential (and
universal) quantification.

» L0 tat satisfies D, @ of Theorem 6. Hence wen(£5° tat) and
cardinals x with x = roen((£5°" tat),.,,) are large cardinals (at

least weakly compact).

> We can say slightly more than this:



Weak compactness of stationary logic (2/2) Wy et (16/17)

Theorem 7. ([oc]) Assume that kK = mcn((ﬁi‘;’tn),@w). Then

L ="k is a weakly compact cardinal and it is a stationary limit of
weakly compact cardinals”.

L =" there is a weakly compact cardinal > x which is a stationary
limit of weakly compact cardinals”.

Theorem 8. ([00]) Assume V = L. Then x = toen(£o%) or

K= mcn((ﬁ?&’gl),{,w) if and only if x is weakly extendible.

Some open Questions:

> Is roen(£X2,) a large cardinal ?

> is wen(£h%)) < wen(LY) consistent ?
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Proof of Theorem 4.

Theorem 4. ([o0]) (1) k=ten(L],) < & is weakly extendible.

Proof. "“<": Assume that x is weakly extendible. Then x is
inaccessible. Suppose that T is a < k-satisfiable L'Eg—theory of
signature of size < k. We want to show that T is satisfiable.

» Since T has cardinality < x, we may assume that T is a subset of «
by some reasonable coding.

» Let 0 be large enough. In particular, s.t.
@ 6>kt and
@ Vy E“ T is < k-satisfiable”.

> Let M < Vybest. k+1C M, TEM,|M|=kx, and let 0, j be
st.j: M <, V5. Then we have V5 =% j(T) is < j(x)-satisfiable”
by @ and by elementarity ofj’./ij(T) Nk

» Since Vz = T| <j(x)and T Cj(T)" it follows that there is
Ae Vyst. Vg “A =m0 T7 Now 0 > (k)™ = k% by @ and
by elementarity of j. Thus, it follows that 21 ):[352 T. Thus, T is
realizable.



Proof of Theorem 4. (2/3)
Theorem 4. ([o0]) (1) r=ten(Ll,) & & is weakly extendible.

“=":  Assume that x = wen(L]! ) holds. Then we have
k =t1oen(L, ). Hence k is weakly compact. In particular, x is
inaccessible. Thus it is enough to show that r satisfies 2 of the
definition of the weak extendibility.
» Suppose that § >k and M < Vyissit. k+1C M and | M| = k.
Let ©* be an L!-sentence in the signature {g} st
(|2, €™) E¢* < €% is well-founded and extensional binary
relation, and the Mostowski collapse of
(120, £%)) = (V. €) for some -
> Let
T :={¢"} U{e(g,,,-) : ¢is a first-order formula in the signature {€},
ag, ... € M and M = ¢(ao, ...)}

U{vx(xgc, © \X/B<QXE£B) Ca < K}
U{c, £4d: a<k}



Proof of Theorem 4. (3/3)
> The signature of the £]! -theory T is {€,d}U{c, : a € M} and
it is of cardinality x.
Claim. T is < k-satisfiable.

- Suppose that To € [T]<". Then M can be expanded to a
model of Ty

» By the assumption on &, it follows that T is satisfiable. Let 5 be a
model of T. By B = u ¢*, we can take the Mostowski collapse
B* of B, and |B*| = V; for some ordinal 6. Note that we have
E%* = €. By the definition j : M — Vg, a—r [Sa]%*, we obtain
M <. V.

Theorem 4. ([oo]) (2) If wen(£M) < oo, then wen(LY) is the

least weakly extendible cardinal.

The proof is similar to that of (1) with an additional trick used in
the proof of the corresponding theorem in ([Magidor 1971] ).

(Theorem 4)



