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Eternal Recurrence (7KZD[EF): RcA Resurrection and Recurrence (4/30)

» For a class P of p.o.s and a set A (of parameters) the Recurrence

Axiom for P and A ((P, A)-RcA, for short) is the following
assertion formulated as an axiom scheme in L.:

(P, A)-RcA : For any L.-formula ¢ = (x) and 3 € A, _if
IFp“p(3)” for a P € P, _then
there is a ground W of the universe V s.t. 3 € W and W = ¢(3).

* An inner model W of V is called a ground if there is a p.o. P € W and
(W, P)-generic G € V s.t. V = WI[G].

» Recurrence Axiom does refer to the Eternal Recurrence in the set
theoretic-multiverse

(in terms of the time line expressed by set-generic extension):
(P, A)-RcA claims: “if something (formulated with parameters in A)

happens in one of the (near) future universes, then it is already
happened in a (not so distant) past universe.”

* We think that the nearness of a future universe can be measured in inverse
proportion to the extent of P.
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Eternal Recurrence (F:ZD[EF): (2/2) Resurrection and Recurrence (5/30)
» A natural strengthening of the Recurrence Axiom:

(P, A)-RcA™ : For any L.-formula ¢ = p(x) and 3 € A, _if
IFp* @(3")” for a P € P, _then
there is a P-ground W of the universe V s.t. 3 € W and W = ¢(3).

*  An inner model W of V is called a P-ground if there is a p.o. P € W with P € P
and (W, P)-generic G s.t. W =P € P and V = W[G].

(P, A)-RcAt can be interpreted as it is saying:
“_if something (formulated with parameters from A) happens in

one of the near future universes, then it already happened in a
near past universe.”



RcA is a variation of known principles Resurrection and Recurrence (6/30)

» A non-empty class P of p.o.s is iterable if it satisfies: (@ {1} € P,
@ P is closed w.r.t. forcing equivalence (ile.ifPePand P~
then P' € P), 2 closed w.r.t. restriction, and 3 for any P e P
and P-name Q, |-p*Q € P” implies P+ Q € P.
» For an iterable P, an L.-formula ¢(a) with parameters a (€ V) is
said to be a P-button if there is P € P s.t. for any P-name Q of
p.o. with [Fp“Q € P”, we have |Fp.q“p(a”)”.
> If ©(3) is a P-button then we call P as above a push of the button ((3).

» The Maximality Principle MP(P, A) introduced in [Hamkins] is the
following assertion expressed as an axiom scheme in L.:

MP(P, A): For any L.-formula ¢(X) and 3 € A, if ©(3) is a P-button
then ¢(3) holds.

[Hamkins] Joel Hamkins, A simple maximality principle, The Journal of Symbolic
Logic Vol.68, no.7, (2003), 527-550.
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Proposition 1. Suppose that P is an iterable class of p.o.s and A a
set (of parameters). (P, A)-RcAt is equivalent to MP(P, A).

Proof. Suppose that (P, A)-RcA™ holds. We show that MP(P, A) holds.
» Suppose that P € P is a push of the P-button ¢(3). Let ¢'(X) be

the formula saying (*) for any Q € P, |o“¢(x*)” holds.

> Then we have |Fp“¢'(3¥)”. By (P, A)-RcA™, there is a P-ground
W of Vst.ae W and W = ¢/(3) holds.

> By the definition (*) of ¢/, it follows that V |= ¢(@) holds.

» Now suppose that MP(P, A) holds, and P € Pis s.t. |Fp“p(a”)”
fora € A. Let ¢ be a formula saying:
(**) there is a P-ground N s.t. X € N and N = ¢(X).
Then ¢”(3) is a P-button and P is its push.
By MP(P A), ¢©"(3) holds in V and hence there is a P-ground W
of Vsit.a€ W and W |= (3). This shows that (P, A)-RcA™holds.

[0 (Proposition 1)
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Inner Model Hypothesis (IMH) (Sy D. Friedman) If a property ¢
holds in an inner model of an outer model, then there is an inner
model of the universe which also satisfies the property ¢.

» (P, A)-RcA is also equivalent to a set-generic version of S. Friedman's
Inner Model Hypothesis with the same parameters P and A.

> The following Proposition can be proved similarly to Proposition 1:

Proposition 2. For a class P of p.o.s with {1} € P and a set A (of
parameters), (P, A)-RcA is equivalent to the following assertion:

For any L.-formula ¢ = ¢(X) and 3 € A, if a P € P forces “there
is a ground M with 3 € M satisfying ¢(3)", then there is a ground
W of Vs.t. ae W and W = ¢(3). I}

» These facts in Propositions 1, 2 are also mentioned in [Barton, et al ]
as characterizations of variations of the Maximality Principle.

[Barton, et aI.J Neil Barton, Andr s Eduardo Caicedo, Gunter Fuchs, Joel David
Hambkins, Jonas Reitz, and Ralf Schindler, Inner-Model Reflection Principles,
Studia Logica, Vol.108, (2020),573-595.
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» For a family I of formulas (in £.) let us consider the following
weakening of Recurrence Axiom:

(P, A)r-RcA : For any I-formula ¢ = ¢(x) and 3 € A, _if

IFp“w(3)” for a P € P, _then
there is a ground W of the universe V s.t. 3 € W and W = ¢(3).

> Let Koefl 1= max{Ng, 2N°}.

Keeji is a cardinal which appears as the reflection cardinal (cardinal
K s.t. reflection down to < k holds) of many natural reflection principles.

Proposition 3. If P contains a p.o. which adds a real, as well as a
p.o. which (preserves R;" but) collapses X,V (e.g. P = proper p.o.s)
then (P, H(Keeji))x,-RcA implies 250 = 5.

Proposition 4. If P contains a p.o. which preserves X;V but collapses
Ny, and also a p.o. which collapses ¥;Y (e.g. P = all p.o.s)
then (P, H(2%0))s,-RcA implies 2% = Ny
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Proposition 3. If P contains a p.o. which adds a real, as well as a

p.o. which (preserves X1V but) collapses R,V (e.g. P = proper p.o.s)
then (P, H(Keeji))x,-RcA implies 280 — N,

Proposition 4. If P contains a p.o. which preserves R;" but collapses
Ny, and also a p.o. which collapses ®;Y (e.g. P = all p.o.s)
then (P, H(2%))s,-RcA implies 280 = Ny

» In Proposition 3, | put “preserves X1V but” in parentheses because
of the following Lemma 5, (1):

Lemma 5. (1) Suppose that (P, H(X2))x,-RcA holds. Then all ele-
ments of P are Ni-preserving and stationary preserving.

(2) Assume (P, A)s,-RcA. If P contains a p.o. adding a real, then
P(w) & A. If P contains a p.o. collapsing k > w then k & A.

> Lemma 5 also shows that H (k) and #(2%) in Lemmas 3,4 are
maximal possible.
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» Recurrence Axioms seem to be quite reasonable requirements.
> If we demand that a maximal (but of course consistent) instance of
“Recurrence” should hold then we arrive at either

(1) (all p.o.s, H(2%))-RcA, or
(2) (semi-proper p.o.s, H (ki ))-RcA.
(see Lemma 5). (1) and (2) are incompatible: By Proposition 3,
(1) implies CH while (2) implies 2% = X, by Proposition 4.
» The conflict between (1) and (2) above can be (almost) resolved by
considering:
(1)" (all p.o.s, H)-RcA for a reasonable H C (2%¢), and
(2) (semi-proper p.o.s, H (ki ))-RcA.

> This combination is consistent (e.g. modulo 2-huge) and follows from
an axiom (introduced later) which also implies almost all known "prefer-
able" axioms like MM™ " and a strong form of Resurrection Axiom.

> Note that (1)’ + (2) implies 2% = N,
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» Maximality Principles and hence also Recurrence Axioms have
relatively low consistency strength.

Theorem 6. ([Hamkins]) The following theories are equiconsistent to
each other and they are also equiconsistent with
ZFC + there are stationarily many inaccessibles:
ZFC + MP(all p.o.s, H(w1)),
ZFC + MP(c.c.c p.o.s, H(2%)),
ZFC + MP(proper p.o.s, H(2%0)).

[Hamkins]\/JoeI Hambkins, A simple maximality principle, The Journal of Symbolic
Logic Vol.68, no.7, (2003), 527-550.

» Maximality Principles increase the consistency strength of large cardinals.

Example 7. Suppose that (P,0)-RcA holds for a class P of p.o.s
s.t. P contains enough collapsing p.o.s. If there is an inaccessible
cardinal then there are class many inaccessible cardinal. I}
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» For an iterable class P of p.o.s, a cardinal & is said to be (tightly)
P-Laver-generically ultrahuge ((tightly) P-Laver-gen. ultrahuge, for
short), if, for any A > k and P € P there is a P-name Q with
Fp“ Qe P7 st for (V,P* Q)-generic H, there are j,M C V[H]
st.j 1V e M, j(k) >\ PHL (Vo)) VB € Mand [P+ Q| < j(k)
(more precisely: P+ Q is forcing equivalent to a p.o. of size < j(x)).

Theorem 8. ([S.F. & Usuba]) Suppose that & is tightly P-Laver-gen.
ultrahuge for an iterable class P. Then (P, H(k))s,-RcAT holds.

Proof of Theorem 8.

Theorem 9. ([S.F.]) Tightly P-Laver-gen. ultrahugeness does not
imply MP(P,0) (under the assumption of a large cardinal slightly
more than the ultrahugeness). ([

> The proof of Theorem 9 can be modified to prove the non-implication
of (P,0)n,-RcA from a generic large cardinal. In particular “X5" in
Theorem 8 is optimal.
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» The following strengthening of tightly P-Laver-gen. ultrahugeness of
r (which is formulated in an axiom scheme) implies MP(P, H(k)).

» For a natural number n, we call a cardinal « super C("-hyperhuge
if for any Ao > & there are A > \g with V) <5, V, and j, M CV
st.j 1V 5 M, j(k) >\ JIMC M and V<5, V.

» r is super C(M-ultrahuge if the condition above holds with
“JMM C M replaced by "/(¥IM C M and Vi € M”.

> If x is super C("-hyperhuge then it is super C("-ultrahuge.

» We shall also say that & is super C(>)-hyperhuge (super
C(>)_ultrahuge, resp.) if it is super C("-hyperhuge (super
C("_ultrahuge, resp.) for all natural number n.

» A similar kind of strengthening of the notions of large cardinals which
we call here “super C(M" appears also in Boney [Boney]. It is called
“C(mM+" and is considered there in connection with extendibility.

[Boney] Will Boney, Model Theoretic Characterizations of Large Cardinals, Israel
Journal of Mathematics, 236, (2020), 133-181.
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» For a natural number n and an iterable class P of p.o.s, a cardinal «
is super C("- P-Laver-generically ultrahuge (super C(")- P-Laver-gen.
ultrahuge, for short) if, for any A\g > « and for any P € P, there are
a A > A\g with V) =<, V, a P-name @ with H—]p“ @ €P”, and 7
M CV[H] s.t.j:V S5, M, j(k) > A, P, H, Vi,V € M and
ViV <5, V[H].

> A super C("- P-Laver-generically ultrahuge cardinal « is tightly
super C("- P-Laver-generically ultrahuge (tightly super C("-
P-Laver-gen. ultrahuge, for short), if [P« Q| < j(k).

» Super C(*°)- P-Laver-gen. ultrahugeness and tightly super C(°)-P-Laver
gen. ultrahugeness are defined similarly to super C(°°)-ultrahugeness.

» Note that, in general, super C(°)-hyperhugeness and super

C(*)_ultrahugeness are notions unformalizable in the language of
ZFC without introducing a new constant symbol for « since we need

infinitely many £.-formulas to formulate them.

> Exceptions are ...
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> Exceptions are when we are talking about a cardinal in a set model
being with one of these properties, or when we are talking about a
cardinal definable in V having these properties in an inner model. In
the latter case, the situation is formalizable with infinitely may
L.-sentences.

» In contrast, the super C(°)-P-Laver gen. ultrahugeness of & is
expressible in infinitely many L.-sentences. This is because a
P-Laver gen. large cardinal « for relevant classes P of p.o.s is
uniquely determined as rj or 2% (see e.g. [1I] or [S.F.]).

Theorem 10. ([S.F. & Usuba]) Suppose that P is an iterable class
of p.o.s and & is super C(°)-P-Laver-gen. ultrahuge. Then
(P, H(k))-RcAT holds.

Proof. Similarly to Theorem 8. [0
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» Consistency of tightly super C(>°)-P-Laver-gen. ultrahuge cardinal
for reasonable P follows from 2-huge.

Lemma 11. ([S.F. & Usuba]) Suppose that x is 2-huge with the
2-huge elementary embedding j, that is, j : V . M CV, for
some M C V and QY C M. Then
Vi(x) F K is super C(*)-hyperhuge cardinal”, and for each n € w,
V() =" there are stationarily many super C("-hyperhuge cardinals’.

I5)

Theorem 12. ([S.F. & Usuba]) Suppose that p is an inaccessible
cardinal and & is super C(°®)-hyperhuge in Vy,. Then there is a
Laver function f : k — V,, for super C(°)-hyperhugeness in Ve @
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Theorem 13. ([S.F. & Usuba]) (1) Suppose that pu is inaccessible
and k < p is super C(®)-ultrahuge in V. Let P = Col(Xy, k).
Then, in V,[G], for any V,,,P-generic G, N;/“[G] (= k) is tightly
super C(°)-g-closed-Laver-gen. ultrahuge and CH holds.

(2) Suppose that y is inaccessible and x < i is super C(*)-ultrahuge
with a Laver function f : Kk — V,; for super C(Oo)—ultrahugeness
in V,,. If Pis the CS-iteration of length x for forcing PFA along
with f, then, in V,[G] for any (V,,P)-generic G, N;/“[G] (= k)
is tightly super C(°)-proper-Laver-gen. ultrahuge and 2% = R,
holds.

(2) Suppose that g is inaccessible and x < p is super C(*)-ultrahuge
with a Laver function f : k — V,, for super C(°)-ultrahugeness in
V.. If Pis the RCS-iteration of length & for forcing MM along with
f, then, in V,,[G] for any (V,,, P)-generic G, N;/“[G] (= k) is tightly
super C(%)-semi-proper-Laver-gen. ultrahuge and 2% = R, holds.
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(3) Suppose that p is inaccessible and k& is super C(*)_ultrahuge with a
Laver function f : k — V, for super C(®)-ultrahugeness in V. If
P is a FS-iteration of length x for forcing MA along with £, then,
in V,[G] for any (V,,P)-generic G, 2% (= k) is tightly super
C(®)_c.c.c.-Laver-gen. ultrahuge, and & is very large in V,.[G].

(4) Suppose that p is inaccessible and « is super C(*)_ultrahuge with
a Laver function f : k — Vj; for super C(*)-ultrahugeness in V,,.
If P is a FS-iteration of length x along with f enumerating “all”
p.o.s, then, in V,[G] for any (V,,,P)-generic G, 2% (= Ny) is
tightly super C(®)-all p.o.s-Laver-gen. ultrahuge, and CH holds.

1)
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» Recall that a cardinal x is hyperhuge, if for every X\ > k&, there is
jiVS.MCVst A < j(r) and JAM C M. A hyperhuge
cardinal x can be characterized in terms of existence of k-complete
normal ultrafilters with certain additional properties (e.g. see [S.F.

& Usuba]).

» For a class P of p.o.s, a cardinal « is tightly P-generic hyperhuge
(tightly P-gen. hyperhuge, for short) if for any A > k&, there is
Q € P s.t. for a (V, Q)-generic H, there are j, M C V[H] s.t.

JiV 350 M, X< j(k), |Q] <j(k), and j"j(A),H € M.
» For a class P of p.o.s, a cardinal « is tightly P-Laver-generically

hyperhuge (tightly P-Laver-gen. hyperhuge, for short) if for any
A >k, and PP € P there is a P-name Q with [Fp“Q € P” s.t. for a

(V, P % Q)-generic H, there are j, M C V[H] s.t. j : V =5, M,

~

A < (), |[P*Q] < j(x), and j"j(\), H € M.
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» For a cardinal x, a ground W of the universe V is called a
< k-ground if there is a p.o. P € W of cardinality <k (in the sense
of V) and (W, P)-generic filter G s.t. V. = W[G].
> Let
W :={W : Wis a <x-ground}.
Since there are only set many < x-grounds, W contains a ground by
Theorem 1.3 in [Usuba]. We shall call W defined above the
< k-mantle of V.

» The following theorem generalizes Theorem 1.6 in [Usubal.

Theorem 14. ([S.F. & Usuba] ) Suppose that P is any class of p.o.s.
If k is a tightly P-gen. hyperhuge cardinal, then the < k-mantle is
the smallest ground of V (i.e. it is the bedrock of V) and it is also
a < k-ground.

[Usuba] Toshimichi Usuba, The downward directed grounds hypothesis and very
large cardinals, Journal of Mathematical Logic, Vol. 17(2) (2017), 1-24.
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Theorem 14. ([S.F. & Usuba]) Suppose that P is any class of p.o.s.
If k is a tightly P-gen. hyperhuge cardinal, then the < k-mantle is

the smallest ground of V (i.e. it is the bedrock of V) and it is also
a < k-ground.

A very rough sketch of the Proof.

» Analyzing the proof of Theorem 14, we also obtain:

Theorem 15. ([S.F. & Usuba]) Suppose that P is any class of p.o.s.

If k is a tightly P-gen. hyperhuge cardinal, then x is a hyperhuge
cardinal in the bedrock W of V. I

Theorem 16. ([S.F. & Usuba]) Suppose that P is any class of p.o.s.
If & is a tightly super C(M-P-gen. hyperhuge cardinal, then  is a
super C" hyperhuge cardinal in the bedrock W of V. In)

» These Theorems have many strong consequences. Some of them
are ...
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Corollary 17.([S.F. & Usuba]) Suppose that P is the class of all
p.o.s. Then the following theories are equiconsistent:

(a )ZFC + “there is a hyperhuge cardinal”.

( b )ZFC + “there is a tightly P-Laver gen. hyperhuge cardinal”.

( ¢ )ZFC + “there is a tightly P-gen. hyperhuge cardinal”.

(d )ZFC + “bedrock W exists and wy is a hyperhuge cardinal in W".

Corollary 18.([S.F. & Usuba] ) Suppose that P is one of the following
classes of p.o.s: all semi-proper p.o.s; all proper p.o.s; all ccc p.o.s;
all o-closed p.o.s. Then the following theories are equiconsistent:

(a)ZFC + “there is a hyperhuge cardinal”.

( b )ZFC + “there is a tightly P-Laver gen. hyperhuge cardinal”.
( ¢ )ZFC + “there is a tightly P-gen. hyperhuge cardinal”.

(d

)ZFC + “bedrock W exists and k. is a hyperhuge cardinal in W'

Cf.: Theorem 13, and Theorem 16. g
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Corollary 19.([S.F. & Usuba]) Suppose that P is the class of all
p.o.s. Then the following theories are equiconsistent:

(a)ZFC + “there is a tightly super C(°)-P-Laver gen. hyperhuge

cardinal”.
(b )ZFC + “bedrock W exists and wy is a super C(*)_hyperhuge
cardinal in W". [

Corollary 20.([S.F. & Usuba] ) Suppose that P is one of the following
classes of p.o.s: all semi-proper p.o.s; all proper p.o.s; all ccc p.o.s;
all o-closed p.o.s. Then the following theories are equiconsistent:

(a)ZFC + “there is a tightly super C(°)-P-Laver gen. hyperhuge
cardinal”.

(b )ZFC + “bedrock W exists and /{tef[v is a super C(°°)-hyperhuge
cardinal in W". Isj
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| 2

>

The existence of tightly super C(°°)-P-Laver gen. superhuge

cardinal for the class P of all semi-proper p.o.s is one of the
strongest principle we considered so far. It implies the tightly super
C(>)_P-Laver gen. superhuge cardinal is 2% = X, and MM T+

holds (see [Il] or [S.F.]), the existence of the bedrock (Theorem 14),
and (P, H(N2))-RcA™ ( Theorem 10).

MM™* implies many preferable set-theoretic axioms/principles
including Woodin's (*) ([Aspero-Schindler]).

[Aspero-Schindler] David Asper6, and Ralf Schindler, Martin's Maximum+-+

>

implies Woodin's axiom (*). Annals of Mathematics, 193(3), (2021), 793-835.

(P, H(N2))-RcA™ claims that any property (even with any subset of
w1 as parameter) forcable by a semi-proper p.o., is a theorem in
some semi-proper ground. E.g. Cich6n’'s Maximum is what happens
in a semi-proper ground.

Strong forms of Resurrection Axiom are also consequences of the
existence of the super C(>)-(semi-proper)-Laver gen. large cardinal:



Toward the Laver-generic Maximum (2 / 4) Resurrection and Recurrence (27/30)
» Suppose that P is a class of p.o.s and ;° is a definition of a cardinal
(eg HNlH, HNzH, “2N0”)

> The following boldface version of the Resurrection Axioms is
considered in [Hamkins-Johnstone]:

[RAZZ[(}L.) : For any A C H(u®) and any PP € P, there is a P-name Q
of p.o.st. [Fp“Q € P” and, for any (V, P x Q)-generic H, there
is A* C H(u* )V st (H(u")Y, A €) < (H(p®)VIH, A%, €).

Theorem 21. [S.F.] For an iterable class of p.o.s P, if rj is tightly
P-Laver-gen. superhuge, then [RAZ(WI) holds. [

[Hamkins-Johnstone] Joel David Hamkins, and Thomas A. Johnstone, Strongly
uplifting cardinals and the boldface resurrection axioms, Archive for Mathematical
Logic Vol.56, (2017), 1115-1133.



Toward the Laver-generic Maximum (3 / 4) Resurrection and Recurrence (28/30)

» With a Lever-genricity corresponding to a larger large cardinal, we
obtain the “tight” version of Unbounded Resurrection Principle in
[Tsaprounis]:

TUR(P) :  For any A > Keejr, and P € P, there exists a P-name Q
with [Fp“Q € P” s.t., for (V P+ Q)-gen. H, there are \* € On,

and jo € V[H] s.t. jo : ()Y S, i H()\*)V[H Jo(Keejt) > A, and
P+Qis forcing equivalent to a p.o. of size jo(Keeft )-

Theorem 22. [S.F.] For an iterable class P, if g is tightly P-
Laver gen. ultrahuge, then TUR(P) holds.

[Tsaprounis] Tsaprounis, On resurrection axioms, The Journal of Symbolic Logic,
Vol.80, No.2, (2015), 587—608.



Toward the Laver-generic Maximum (4/ 4) Resurrection and Recurrence (29/30)
» We can even establish the consistency of:
> 2% is tightly super C(°°)-(semi-proper)-Laver gen. superhuge +
(all p.o.s, H(R1)W)-RcA
A construction of a model: Work in a model V) where & is super
C(>) hyperhuge. Then V,, < V). Take an inaccessible § < x with
Vs < V. Use this to force (all p.o.s, H(N1))-RcA. & is still super
C(>) hyperhuge in the generic extension, so we can use it to force
2% to be tightly super C(>)-(semi-proper)-Laver gen. superhuge.
(all p.o.s, H(X1)"W)-RcA survives this forcing. I

» Open Problems:

> Is there any natural axiom which would imply the combination of
the principles above?

> A (possibly) related question: Is there anything similar to HOD
dichotomy for the bedrock under a (tightly generic/tightly
Laver-generic) very large cardinal?
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Recurrence Axioms are monotonic in parameters

» For classes of p.o.s P, P’ and sets A, A’ of parameters,
if PC P and AC A, then we have

(P, A)-RcA = (P,A)-ReA.

» Note that, in general, we do not have similar implication between
MP(P, A) and MP(P’, A").



Proof of Propositions 3,4 and Lemma 5.

Proposition 3. If P contains a p.o. which adds a real, as well as a
p.o. which (preserves X1V but) collapses R,V (e.g. P = proper p.o.s)
then (P, H(Feeji))x,-RcA implies 2% = 5.

Proof. Suppose that P is as above and (P, H (ki ))x,-RcA holds.

> 2%o > Ny Otherwise CH holds. Then P(w)Y € H (k). Hence
“Ix(x CwAx g P(w)V)" is a L1-formula with parameters from
H(keeji) and P € P adding a real forces (the formula in forcing
language corresponding to) this formula.

> By (P, H(keeji))s,-RcA, the formula must hold in a ground. This is
a contradiction.

2N <N If 280 > N, then N1V, RV € H(280) € H (ko). Let
P € P be a p.o. which preserves Ry but collapses N,.

> Letting ¢(x,y) a Xi-formula saying “3f (f is a surjection from x to y)
we have H_IP’“ 1/1((N1V) v s (NQV) v ) 7,

> By (P, H(2%))s,-RcA, the formula 1)(R;",R,Y) must hold in a
ground. This is a contradiction.



Proof of Propositions 3,4 and Lemma 5. (2/3)

Proposition 4. If P contains a p.o. which preserves R;Y but collapses
Xy, and also a p.o. which collapses ®;Y (e.g. P = all p.o.s)
then (P, H(2%0))s,-RcA implies 2% = Ny

Proof. We have 2% < X5, by the second half of the proof of Proposition 3.

b If 2% = Ry then RV e H(2%).

> Let P € P be a p.o. collapsing RV, le. IFp“ N;V is countable”.
Since “- - - is countable” is X1, there is a ground M s.t.
M =4 is countable”. This is a contradiction. (Proposition 4)



Proof of Propositions 3,4 and Lemma 5. (3/3)

Lemma 5. (1) Suppose that (P, H(X2))x,-RcA holds. Then all ele-
ments of P are Nj-preserving and stationary preserving.

(2) Assume (P, A)s,-RcA. If P contains a p.o. adding a real, then
P(w) € A. If P contains a p.o. collapsing k > w then k & A.

Proof. (1): Suppose otherwise and P € P is s.t.
IFe N;Y is countable”. Note that w,¥; € H(Keeft )-

» By (P, ’H(/{te%))zl—RcA, it follows that there is a ground W of V
s.t. W =“N;" is countable”. This is a contradiction.

» Suppose that P € P destroy the stationarity of S C w;. Note that
w1, S € H(N2). Let ¢ = (Y, z) be the X1-formula

dx (y is a club subset of the ordinal y and z N x = 0).

Then we have |-p“@(w1,S)”. By (P, H(keej))x,-ReA, it follows
that there is a ground W C Vs.it. S € W and W = (w1, S). This
is a contradiction.

(2): By the first part of the proof of Proposition 3, and the proof of
Proposition 4. (0] (Lemma 5)



Proof of Theorem 8.

Theorem 8. ([S.F. & Usuba]) Suppose that x is tightly P-Laver-gen.
ultrahuge for an iterable class P. Then (P, H(x))s,-RcAT holds.

Proof. We use the following

Lemma 8a. If « is a limit ordinal and V, satisfies a large enough
fragment of ZFC, then for any P € V,, and (V,PP)-generic G, we
have V,[G] = V,VICl. )

» Assume that x is tightly P-Laver gen. ultrahuge for an iterable class
P of p.os. > Suppose that ¢ = ¢(x) is Lo formula (in L;),
a€eH(k), and P € P is s.t.

(@) VI [Fete(d)”.
» Let A\ >k best. PeV, and
(0) Vi <5V for a sufficiently large n.

In particular, we may assume that we have chosen the n above so
that a sufficiently large fragment of ZFC holds in V), in the sense of
Lemma 8a.



Proof of Theorem 8. (2/3)
Let Q be a P-name s.t. [Fp“Q € P”, and for (V, P« Q)-generic H

there are j, M C V[H] with

()J'V_MMr

(2) i(k) >
()P*QPH ViVl € M, and
)

(4) [P+Q| < j(x).
By (4), we may assume that the underlying set of P+ Q is j(x) and

PxQ e Vi
Let G := HNP. Note that G € M by (3) and we have
V[H]) satisfies a sufficiently large fragment of ZFC

Since Vi) (= iy
by elementarity of j, and hence the equality follows by Lemma 8a

—~
(5) ‘G(A)M;‘G(A)V[H] = Vi [H]
(3

v

by
Thus, by (3) and by the definability of grounds, we have
V()E/\/IandV VIG] € M.



Proof of Theorem 8. (3/3)
Claim 8b. V;(,)V[G] = ¢(a).

- By Lemma 8a, \,V[G] = V,VI[€] and Viia [G] V; V[G] by (5).
By (0), both V,V[G] and \/JV [G] satlsfy Iarge enough fragment of
ZFC. Thus
(6) VA\Y[G] <5, Vi) "[G].

By (a) and (0) we have V,V[G] = ¢(a). By (6) and since ¢ is ¥,

it follows that \/j(A)V[G] E o(a). —| (Claim 8b.)
Thus we have

(7) M [=“there is a P-ground N of Vj(yy s.t. N |= p(a)”.

By the elementarity (1), it follows that

(6) V [=“there is a P-ground N of V) s.t. N = ¢(a)”.

Now by (0), it follows that there is a P-ground W of V s.t.

W E p(a). [ (Theorem 8)l]
[ back J



A very rough sketch of the Proof of Theorem 14.

Theorem 14. ([S.F. & Usuba]) Suppose that P is any class of p.o.s.
If k is a tightly P-gen. hyperhuge cardinal, then the < k-mantle is
the smallest ground of V (i.e. it is the bedrock of V) and it is also
a < k-ground.

A rough sketch of the Proof.

» Suppose that  is tightly 7P-gen. hyperhuge and let W be the < x-mantle.

» By Theorem 1.3 in [Usuba], it is enough to show that, for any ground
W C W is actually a < r-ground and hence W = W holds.

» Let W C W be a ground. Let y be the cardinality (in the sense of V) of a
p.o. S € Ws.t. thereis a (W, S)-generic F s.t. V. = W[F]. W.l.o.g., u > k.

» By Laver-Woodin Theorem, there is r € V s.t. W = &(-, r)V for an
L.-formula ¢.

> Let 0 > 1 bes.t. r € Vy, and for a sufficiently large natural number n, we
have V¥ <5, V. By the choice of 6, ®(-, r)Vev =0, NVNnVvyY =wn v,
=V, Let Q € P s.t. for (V,Q)-generic H, there are j, M C V[H] with
JiV e M, 0 < j(r), |Q| < j(k), Vi) B € M, and H, j"j(0) € M.
... (back and forth with j) ... Thus V¥ C V"W, Since 6 can be arbitrary
large, It follows that W C W.



