Generic Absoluteness Revisited

A joint work with Takehiko Gappo (合浦 岳彦) and フランチェスコ・パレンテ (Francesco Parente)

Sakaé Fuchino (渕野 昌) Kobe University, Japan https://fuchino.ddo.jp/index.html

(2024年11月27日 (23:31 JST) printer version)

2024年10月9日(11:25~12:05 JST), RIMS Set Theory Workshop 2024*
2024年11月15日(14:00~17:00 JST), Seminar with Yo matsubara and Francesco Parente, Kobe[†]
2024年11月27日(15:30~17:0 JST), Kobe Set Theory Seminar[†]

The following slides are typeset using uplaTEX with beamer class, and presented on GoodReader v.5.19.1202* (Skim vesion $1.7.6^{\dagger}$)

The most up-to-date version of these slides is downloadable as https://fuchino.ddo.jp/slides/RIMS2024-set-theory-fuchino-pf.pdf

The research is supported by Kakenhi Grant-in-Aid for Scientific Research (C) 20K03717

- [II] S.F., A. Ottenbreit Maschio Rodrigues, and H. Sakai, Strong downward Löwenheim-Skolem theorems for stationary logics, II
 reflection down to the continuum, Archive for Mathematical Logic, Vol.60, 3-4, (2021), 495–523. https://fuchino.ddo.jp/papers/SDLS-II-x.pdf
- [S.F.1] S.F., Maximality Principles and Resurrection Axioms under a Laver generic large cardinal, (note for "Maximality Principles and Resurrection Axioms in light of a Laver generic large cardinal", in preparation) https://fuchino.ddo.jp/papers/RIMS2022-RA-MP-x.pdf
- [S.F. & Usuba] S.F., and T. Usuba, On Recurrence Axioms, preprint. https://fuchino.ddo.jp/papers/recurrence-axioms-x.pdf
- [S.F.2] S.F., Reflection and Recurrence, to appear in the Festschrift on the occasion of the 75. birthday of Professor Janos Makowsky, Birkhäuser, (2024). https://fuchino.ddo.jp/papers/reflection_and_recurrence-Janos-Festschrift-x.pdf
- [S.F. & Gappo & Parente] S.F., T. Gappo, and F. Parente, Generic Absoluteness revisited, preprint. https://fuchino.ddo.jp/papers/generic-absoluteness-revisited-x.pdf

- Bagaria's Absoluteness Theorem
- Recurrence Axioms
- Recurrence Axiom⁺ = Maximality Principle
- Solution(s) of Continuum Problem under Recurrence Axiom
- Consistency strength of Maximality Principles (= Recurrence Axioms⁺)
- ▷ Tightly P-Laver-gen. ultrahuge cardinal
- \triangleright Generic absoluteness under \mathcal{P} -Laver-gen. large cardinals
- ightarrow Tightly super $C^{(\infty)}$ - \mathcal{P} -Laver-gen. ultrahuge cardinal ightharpoonup Bedrock of tightly
 - \mathcal{P} -gen. hyperhuge cardinal \triangleright Equiconsistency as the Eternal Recurrence
 - > Toward the Laver-generic Maximum

▶ We discuss "generalizations" of the following theorem (see Theorem 11 15).

Theorem 1. (M.Viale, Theorem 1.4 in [1]) Assume that MM⁺⁺ holds, and there are class many Woodin cardinals. Then, for any stationary preserving p.o. \mathbb{P} with $\Vdash_{\mathbb{P}}$ BMM", we have $\mathcal{H}(\aleph_2)^{\mathsf{V}} \prec_{\Sigma_2} \mathcal{H}(\aleph_2)^{\mathsf{V}[\mathbb{G}]} \quad \text{for } (\mathsf{V},\mathbb{P})\text{-generic } \mathbb{G}.$

- ▶ MM⁺⁺ is the double plus version of Martin's Maximum.
- \mathbb{I} For any stationary preserving \mathbb{P} , any family \mathcal{D} of dense subsets of \mathbb{P} with $|\mathcal{D}| < \aleph_2$, and set S of P-names of stationary subsets of ω_1 with $|\mathcal{S}| < \aleph_2$, there is a \mathcal{D} -generic filter \mathbb{G} over \mathbb{P} s.t. $S[\mathbb{G}] \subset \omega_1$ is stationary for all $S \in \mathcal{S}$.
- > BMM stands for Bounded Martin's Maximum.

 \llbracket For any stationary preserving \mathbb{P} , family \mathcal{D} of dense subsets of \mathbb{P} with $|\mathcal{D}| < \aleph_2$ s.t. each $D \in \mathcal{D}$ is generated by $D' \subseteq D$ with $|D'| < \aleph_2$, there is a \mathcal{D} -generic filter \mathbb{G} over \mathbb{P} .

^[1] Matteo Viale, Martin's maximum revisited, Archive of Mathematical Logic, Vol.55, (2016), 295-316.

- **Notation:** For an ordinal α , let $\alpha^{(+)} := \sup(\{|\beta|^+ : \beta < \alpha\})$. Note that $\alpha^{(+)} = \alpha$ if α is a cardinal. Otherwise, we have $\alpha^{(+)} = |\alpha|^+$.
- ▶ Viale's Theorem 1. is based on Bagaria's Absoluteness Theorem.
- **Theorem 2.** (Bagaria's Absoluteness Theorem, Theorem 5 in $^{[2]}$) For an uncountable cardinal κ and a class \mathcal{P} of p.o.s closed under forcing equivalence, and restriction, the following are equivalent:
 - (a) $BFA_{<\kappa}(\mathcal{P})$.
 - $(\ \mathrm{b}\)\quad \text{For any } \mathbb{P}\in\mathcal{P}\text{, } \Sigma_{1}\text{-formula }\varphi\text{ in }\mathcal{L}_{\varepsilon}\text{ and }a\in\mathcal{H}(\kappa)\text{, }\Vdash_{\mathbb{P}}``\varphi(a)"\Leftrightarrow\varphi(a).$
 - $(\text{ c }) \quad \text{For any } \mathbb{P} \in \mathcal{P} \text{ and } (V,\mathbb{P}) \text{-generic } \mathbb{G}, \quad \mathcal{H}(\kappa)^V \prec_{\Sigma_{\mathbf{1}}} \mathcal{H}((\kappa^{(+)})^{V[\mathbb{G}]})^{V[\mathbb{G}]}.$
- ▶ BFA_{< κ}(\mathcal{P}) is the Bounded Forcing Axiom for \mathcal{P} .
- \llbracket For any $\mathbb{P} \in \mathcal{P}$ and any family of \mathcal{D} dense subsets of \mathbb{P} with $|\mathcal{D}| < \kappa$, and s.t. each $D \in \mathcal{D}$ is generated by some $D' \subseteq D$ with $|\mathcal{D}'| < \kappa$, ... \rrbracket

^[2] Joan Bagaria, Bounded forcing axioms as principles of generic absoluteness, Archive of Mathematical Logic, Vol.39, (2000), 393-401.

▶ Recurrence Axiom for a class \mathcal{P} of p.o.s and a set A ([S.F. & Usuba]) is the axiom scheme expressing:

```
 \begin{array}{l} (\mathcal{P}, A)\text{-RcA} : \text{ For any } \mathcal{L}_{\varepsilon}\text{-formula } \varphi = \varphi(\overline{x}) \text{ and } \overline{a} \in A, \\ \underline{\text{if }} \  \, |\!\!|_{\mathbb{P}}\text{``} \varphi(\overline{a})\text{'' for a } \mathbb{P} \in \mathcal{P}, \ \underline{\text{then}} \\ \text{there is a } \underline{\text{ground}} \  \, \text{W of the universe V s.t. } \overline{a} \in \text{W and W } \models \varphi(\overline{a}). \end{array}
```

* An inner model W of V is called a ground if there is a p.o. $\mathbb{P} \in W$ and (W, \mathbb{P}) -generic \mathbb{G} s.t. $V = W[\mathbb{G}]$.

Recurrence Axiom (2/2)

► The following is a natural strengthening of the Recurrence Axiom ([S.F. & Usuba]):

```
(\mathcal{P}, A)-RcA^+: For any \mathcal{L}_{\varepsilon}-formula \varphi = \varphi(\overline{x}) and any \overline{a} \in A,

<u>if</u> \Vdash_{\mathbb{P}} "\varphi(\overline{a})" for a \mathbb{P} \in \mathcal{P}, <u>then</u>
there is a \underline{\mathcal{P}}-ground W of the universe V s.t. \overline{a} \in W and W \models \varphi(\overline{a}).
```

* An inner model W of V is called a \mathcal{P} -ground if there is a p.o. $\mathbb{P} \in W$ with $W \models "\mathbb{P} \in \mathcal{P}"$, and (W, \mathbb{P}) -generic \mathbb{G} s.t. $V = W[\mathbb{G}]$.

- ▶ A non-empty class \mathcal{P} of p.o.s is **iterable** if it satisfies: ① $\{1\} \in \mathcal{P}$, ① \mathcal{P} is closed w.r.t. forcing equivalence (i.e. if $\mathbb{P} \in \mathcal{P}$ and $\mathbb{P} \sim \mathbb{P}'$ then $\mathbb{P}' \in \mathcal{P}$), ② closed w.r.t. restriction, and ③ for any $\mathbb{P} \in \mathcal{P}$ and \mathbb{P} -name \mathbb{Q} , $\Vdash_{\mathbb{P}}$ " $\mathbb{Q} \in \mathcal{P}$ " implies $\mathbb{P} * \mathbb{Q} \in \mathcal{P}$.
- * For an iterable \mathcal{P} , an $\mathcal{L}_{\varepsilon}$ -formula $\varphi(\overline{a})$ with parameters \overline{a} $(\in V)$ is said to be a \mathcal{P} -button if there is $\mathbb{P} \in \mathcal{P}$ s.t. for any \mathbb{P} -name \mathbb{Q} of p.o. with $\Vdash_{\mathbb{P}}^{*}\mathbb{Q} \in \mathcal{P}$ ", we have $\Vdash_{\mathbb{P}*\mathbb{Q}}^{*}$ " $\varphi(\overline{a})$ ".
- * If $\varphi(\overline{a})$ is a \mathcal{P} -button then we call \mathbb{P} as above a push of the button $\varphi(\overline{a})$.
- ▶ The Maximality Principle MP(\mathcal{P} , A) for an iterable \mathcal{P} is the assertion expressed as an axiom scheme in $\mathcal{L}_{\varepsilon}$ (Hamkins ^[3]):

 $\mathsf{MP}(\mathcal{P}, A)$: For any $\mathcal{L}_{\varepsilon}$ -formula $\varphi(\overline{x})$ and $\overline{a} \in A$, if $\varphi(\overline{a})$ is a \mathcal{P} -button then $\varphi(\overline{a})$ holds.

^[3] Joel Hamkins, A simple maximality principle, The Journal of Symbolic Logic, Vol.68, no.7, (2003), 527–550.

of V s.t. $\overline{a} \in W$ and $W \models \varphi(\overline{a})$.

Proposition 3. Suppose that \mathcal{P} is an iterable class of p.o.s and A a set (of parameters). (\mathcal{P}, A) -RcA⁺ is equivalent to MP (\mathcal{P}, A) .

Proof.

Identity crisis

Inner Model Hypothesis (IMH) (Sy-D. Friedman) If a property φ holds in an inner model of an outer model, then there is an inner model of the universe which also satisfies the property φ .

Proposition 4. For a class $\mathcal P$ of p.o.s with $\{1\} \in \mathcal P$ and a set A (of parameters), $(\mathcal P,A)$ -RcA+ is equivalent to the ZFC version of IMH: For any $\mathcal L_{\varepsilon}$ -formula $\varphi=\varphi(\overline x)$ and any $\overline a\in A$, if a $\mathbb P\in \mathcal P$ forces "there is a ground M with $\overline a\in M$ satisfying $\varphi(\overline a)$ ", then there is a $\mathcal P$ -ground $\mathbb P$

▶ These equivalences in Propositions 3, 4 are also mentioned in ^[4].

^[4] Neil Barton, Andrés Eduardo Caicedo, Gunter Fuchs, Joel David Hamkins, Jonas Reitz, and Ralf Schindler, Inner-Model Reflection Principles, Studia Logica, Vol.108, (2020),573–595.

- ▶ For a family Γ of formulas (in $\mathcal{L}_{\varepsilon}$), we consider the following restricted version of Recurrence Axiom:
- $(\mathcal{P}, A)_{\Gamma}$ -RcA $^+$: For any Γ-formula $\varphi = \varphi(\overline{x})$ and $\overline{a} \in A$, if $\models_{\mathbb{P}}$ " $\varphi(\overline{a})$ " for a $\mathbb{P} \in \mathcal{P}$, then there is a \mathcal{P} -ground W of the universe V s.t. $\overline{a} \in W$ and $W \models_{\varphi}(\overline{a})$.
- Proposition 5. ([S.F. & Usuba]) If \mathcal{P} contains a p.o. which adds a real, as well as a p.o. which (preserves \aleph_1^V but) collapses \aleph_2^V (e.g. $\mathcal{P} =$ proper p.o.s), then $(\mathcal{P}, \mathcal{H}(\kappa_{\mathfrak{refl}}))_{\Sigma_1}$ -RcA implies $2^{\aleph_0} = \aleph_2$.
- Proposition 6. ([S.F. & Usuba]) If $\mathcal P$ contains a p.o. which preserves \aleph_1^V but collapses \aleph_2 , and also a p.o. which collapses \aleph_1^V (e.g. $\mathcal P$ = all p.o.s), then $(\mathcal P,\mathcal H(2^{\aleph_0}))_{\Sigma_1}$ -RcA implies $2^{\aleph_0}=\aleph_1$.

- $\begin{array}{ll} \textbf{Proposition 5.} & ([S.F. \& Usuba]) \text{ If } \mathcal{P} \text{ contains a p.o. which adds} \\ \text{a real, as well as a p.o. which (preserves <math>\aleph_1^V \text{ but) collapses } \aleph_2^V \\ \text{(e.g. } \mathcal{P} = \text{proper p.o.s), } \underline{\text{then}} & (\mathcal{P}, \mathcal{H}(\kappa_{\mathfrak{reff}}))_{\Sigma_1}\text{-RcA implies } 2^{\aleph_0} = \aleph_2. \end{array}$
- Proposition 6. ([S.F. & Usuba]) If $\mathcal P$ contains a p.o. which preserves \aleph_1^V but collapses \aleph_2 , and also a p.o. which collapses \aleph_1^V (e.g. $\mathcal P=$ all p.o.s), then $(\mathcal P,\mathcal H(2^{\aleph_0}))_{\Sigma_1}$ -RcA implies $2^{\aleph_0}=\aleph_1$.
- ▶ In Proposition 5, I put "preserves \aleph_1^V but" in parentheses because of the following Lemma 7, (1):
- Lemma 7. ([S.F. & Usuba]) (1) Suppose that $(\mathcal{P}, \mathcal{H}(\aleph_2))_{\Sigma_1}$ -RcA holds. Then all elements of \mathcal{P} are stat. preserving.
- (2) Assume $(\mathcal{P},A)_{\Sigma_1}$ -RcA. If \mathcal{P} contains a p.o. adding a real, then $\mathcal{P}(\omega) \not\in A$. If \mathcal{P} contains a p.o. collapsing $\kappa > \omega$ then $\kappa \not\in A$.
- ▷ Lemma 7, (2) shows that $\mathcal{H}(\kappa_{\mathfrak{refl}})$ and $\mathcal{H}(2^{\aleph_0})$ in Recurrence Axioms in Lemmas 5,6 are maximal possible.

- **Proposition 8.** Suppose that all $\mathbb{P} \in \mathcal{P}$ preserve cardinals, and \mathcal{P} contains p.o.s adding at least κ many reals for each $\kappa \in \mathsf{Card}$ (This is the case e.g. if $\mathcal{P} = \mathsf{ccc} \; \mathsf{p.o.s}$). Then
- (a) $(\mathcal{P},\emptyset)_{\Sigma_2}$ -RcA⁺ implies that 2^{\aleph_0} is very large.
- (b) $(\mathcal{P}, \mathcal{H}(2^{\aleph_0}))_{\Sigma_2}$ -RcA⁺ implies that 2^{\aleph_0} is a limit cardinal. Thus, if 2^{\aleph_0} is regular in addition, then 2^{\aleph_0} is weakly inaccessible.
- (c) If there is a weakly inaccessible cardinal above 2^{\aleph_0} , then $(\mathcal{P},\mathcal{H}(2^{\aleph_0}))_{\Sigma_2}$ -RcA⁺ implies that 2^{\aleph_0} is a limit of inaccessible cardinals.
 - **Proof.** (a): To prove e.g. that $2^{\aleph_0} > \aleph_\omega$, let $\mathbb{P} \in \mathcal{P}$ be s.t. $\Vdash_{\mathbb{P}}$ " $2^{\aleph_0} > \aleph_\omega$ ". Then by $(\mathcal{P},\emptyset)_{\Sigma_2}$ -RcA⁺, there is a \mathcal{P} -ground W of V s.t. $W \models 2^{\aleph_0} > \aleph_\omega$. Since V is \mathcal{P} -gen. extension of W and \mathcal{P} preserves cardinals, it follows that $V \models 2^{\aleph_0} > \aleph_\omega$.
 - (b): Suppose $\mu < 2^{\aleph_0}$. Then $\mu \in \mathcal{H}(2^{\aleph_0})$. There is $\mathbb{P} \in \mathcal{P}$ s.t. $\Vdash_{\mathbb{P}}$ " $2^{\aleph_0} > \mu^+$ ". By $(\mathcal{P}, \mathcal{H}(2^{\aleph_0}))_{\Sigma_2}$ -RcA $^+$, it follows that there is a \mathcal{P} -ground W of V which satisfies this statement. Since \mathcal{P} preserves cardinals it follows that $V \models 2^{\aleph_0} > \mu^+$. (c): ... \square (Proposition 8)

► Maximality Principles and hence also Recurrence Axioms have relatively low consistency strength.

Theorem 9. (Hamkins ^[3], Asperó ^[5]) The following theories are equiconsistent to each other and they are also equiconsistent with ZFC + there are stationarily many inaccessibles: ZFC + MP(all p.o.s, $\mathcal{H}(2^{\aleph_0})$), ZFC + MP(c.c.c p.o.s, $\mathcal{H}(2^{\aleph_0})$), ZFC + MP(proper p.o.s, $\mathcal{H}(2^{\aleph_0})$), ZFC + MP(semi-proper p.o.s, $\mathcal{H}(2^{\aleph_0})$).

▶ Caution!! The exact consistency strength of ZFC + MP(stationary preserving p.o.s, $\mathcal{H}(2^{\aleph_0})$) is not known and its lower bound is much higher than the consistency strength in Theorem 9.

^[3] Joel Hamkins, A simple maximality principle, The Journal of Symbolic Logic Vol.68, no.7, (2003), 527–550.

^[5] David Asperó, A Maximal Bounded Forcing, The Journal of Symbolic Logic, Vol.67, No.1 (2002), 130–142.

► The following Ikegami-Trang Absoluteness Theorem extends (Bagaria's Absoluteness Th.

Theorem 10. (Ikegami, and Trang $^{[6]}$) For an iterable class \mathcal{P} of p.o.s, and a cardinal κ the following are equivalent:

- $(a) \ (\mathcal{P},\mathcal{H}(\kappa))_{\Sigma_1}\text{-RcA}^+. \quad (b) \ (\mathcal{P},\mathcal{H}(\kappa))_{\Sigma_1}\text{-RcA}. \quad (c) \ \mathsf{BFA}_{<\,\kappa}(\mathcal{P}). \qquad \ \ \, \Box$
- ▷ Theorem 10 together with Proposition 5 implies BFA_{< κ_{refl}} (proper p.o.s) → $2^{\aleph_0} = \aleph_2$.
- Theorem 11. ([S.F. & Gappo & Parente]) Suppose that \mathcal{P} is an iterable Σ_n -definable class of p.o.s for $n \geq 2$ and $(\mathcal{P}, \mathcal{H}(\kappa))_{\Sigma_n \cup \Gamma}$ -RcA⁺ holds for an uncountable cardinal κ where Γ is a set of formulas which are conjunction of a Σ_2 -formula and a Π_2 -formula.
- Then, for any $\mathbb{P} \in \mathcal{P}$ s.t. $\Vdash_{\mathbb{P}}$ "BFA $_{<\kappa}(\mathcal{P})$ ", we have $\mathcal{H}(\mu^+)^{\mathsf{V}} \prec_{\Sigma_2} \mathcal{H}(\mu^+)^{\mathsf{V}[\mathbb{G}]}$ for all $\mu < \kappa$ and for (V, \mathbb{P}) -generic \mathbb{G} .

Proof of Theorem 11

► For an iterable class \mathcal{P} of p.o.s, a cardinal κ is said to be (tightly) \mathcal{P} -Laver-generically ultrahuge, if

for any $\lambda > \kappa$ and $\mathbb{P} \in \mathcal{P}$ there is a \mathbb{P} -name \mathbb{Q} with $\Vdash_{\mathbb{P}}$ " $\mathbb{Q} \in \mathcal{P}$ ", s.t. for $(V, \mathbb{P} * \mathbb{Q})$ -generic \mathbb{H} , there are $j, M \subseteq V[\mathbb{H}]$ s.t. $j : V \xrightarrow{\sim}_{\kappa} M$, $j(\kappa) > \lambda$, $\mathbb{P}, \mathbb{H}, (V_{j(\lambda)})^{V[\mathbb{H}]} \in M$ and $|\mathbb{P} * \mathbb{Q}| \leq j(\kappa)$ (more precisely: $\mathbb{P} * \mathbb{Q}$ is forcing equivalent to a p.o. of size $\leq j(\kappa)$).

Theorem 12. ([S.F. & Gappo & Parente]) If κ is tightly \mathcal{P} -Laver-gen. ultrahuge for an iterable class \mathcal{P} . Then $(\mathcal{P}, \mathcal{H}(\kappa))_{\Gamma}$ -RcA⁺ holds.

- * $\Gamma = \text{ conjunctions of } \Sigma_2 \text{ and } \Pi_2 \text{ formulas.}$
- Proof ▶On the other hand:
- Theorem 13. ([S.F.1]) Tightly \mathcal{P} -Laver-gen. ultrahugeness does not
- imply $\mathsf{MP}(\mathcal{P},\emptyset)$ (under the assumption of a large cardinal slightly more than the ultrahuge).
- ightharpoonup The proof of Theorem 13 can be modified to show the non-implication of $(\mathcal{P},\emptyset)_{\Pi_3}$ -RcA from a generic large cardinal for many instances of \mathcal{P} .

 "\Gamma" in Theorem 12 for such \mathcal{P} is almost optimal.

- ▶ The following is a corollary of Theorem 11 (and Theorem 12 for (2)) :
- **Corollary 14.** (1) Suppose that $(\mathcal{P}, \mathcal{H}(\kappa))$ -RcA⁺ holds for an iterable \mathcal{P} . Then, for for any $\mathbb{P} \in \mathcal{P}$ s.t. $\Vdash_{\mathbb{P}}$ "BFA $_{<\kappa}(\mathcal{P})$ ", we have $\mathcal{H}(\mu^+)^{\mathsf{V}} \prec_{\Sigma_2} \mathcal{H}(\mu^+)^{\mathsf{V}[\mathbb{G}]}$ for all $\mu < \kappa$ and for (V, \mathbb{P}) -generic \mathbb{G} . Thus, $\mathcal{H}(\kappa)^{\mathsf{V}} \prec_{\Sigma_2} \mathcal{H}((\kappa^{(+))^{\mathsf{V}[\mathbb{G}]}})^{\mathsf{V}[\mathbb{G}]}$.
 - (2) Suppose that κ is tightly \mathcal{P} -Laver-gen. ultrahuge for an iterable and Σ_2 -definable \mathcal{P} . Then, for for any $\mathbb{P} \in \mathcal{P}$ s.t. $\Vdash_{\mathbb{P}}$ "BFA $_{<\kappa}(\mathcal{P})$ ", we have $\mathcal{H}(\mu^+)^{\mathsf{V}} \prec_{\Sigma_2} \mathcal{H}(\mu^+)^{\mathsf{V}[\mathbb{G}]}$ for all $\mu < \kappa$ and for (V, \mathbb{P}) -generic \mathbb{G} . Thus, $\mathcal{H}(\kappa)^{\mathsf{V}} \prec_{\Sigma_2} \mathcal{H}((\kappa^{(+))^{\mathsf{V}[\mathbb{G}]}})^{\mathsf{V}[\mathbb{G}]}$.
- ▶ By a direct proof, we can improve (2) of the Corollary 14:
- Theorem 15.([S.F. & Gappo & Parente]) For an iterable class $\mathcal P$ of p.o.s, suppose that $\underline{\mathsf{BFA}}_{<\kappa}(\mathcal P)$ holds, and κ is tightly $\mathcal P$ -Laver-gen. huge. Then, for any $\overline{\mathbb P}\in\mathcal P$ s.t. $\Vdash_{\mathbb P}$ " $\underline{\mathsf{BFA}}_{<\kappa}(\overline{\mathcal P})$ ", we have $\overline{\mathcal H}(\mu^+)^{\mathsf V} \prec_{\Sigma_2} \mathcal H(\mu^+)^{\mathsf V[\mathbb G]}$ for all $\mu<\kappa$ and for $(\mathsf V,\mathbb P)$ -generic $\mathbb G$. Thus, $\mathcal H(\kappa)^{\mathsf V} \prec_{\Sigma_2} \mathcal H((\kappa^{(+)})^{\mathsf V[\mathbb G]})^{\mathsf V[\mathbb G]}$.

Theorem 15.([S.F. & Gappo & Parente]) For an iterable class $\mathcal P$ of p.o.s, suppose that $\underline{\mathsf{BFA}}_{<\kappa}(\mathcal P)$ holds, and κ is tightly $\mathcal P$ -Laver-gen. huge. Then, for any $\overline{\mathbb P}\in\mathcal P$ s.t. $\Vdash_{\mathbb P}$ " $\underline{\mathsf{BFA}}_{<\kappa}(\mathcal P)$ ", we have $\overline{\mathcal H}(\mu^+)^{\mathsf V} \prec_{\Sigma_2} \mathcal H(\mu^+)^{\mathsf V[\mathbb G]}$ for all $\mu<\kappa$ and for $(\mathsf V,\mathbb P)$ -generic $\mathbb G$. Thus, $\mathcal H(\kappa)^{\mathsf V} \prec_{\Sigma_2} \mathcal H((\kappa^{(+)})^{\mathsf V[\mathbb G]})^{\mathsf V[\mathbb G]}$.

Proof

- ▶ BFA $_{<\kappa}(\mathcal{P})$ in the assumption of Theorem 15 is absorbed in the Laver-genericity part of the assumption if we assume the Lever-genericity for a slightly (?) stronger notion of large cardinal:
- Theorem 16. ([7], see also [S.F. & Gappo & Parente]) (1) Suppose that κ is \mathcal{P} -Laver-gen. supercompact. Then $\mathsf{FA}_{<\kappa}(\mathcal{P})$ holds.
 - (2) If all elements of the class $\mathcal P$ of p.o.s are stationary preserving and κ is $\mathcal P$ -Laver-gen. supercompact, then $\mathsf{FA}^{+<\kappa}_{<\kappa}(\mathcal P)$ holds.

^[7] S.F., A. Ottenbreit Maschio Rodrigues, and H. Sakai, Strong Löwenheim-Skolem theorems for stationary logics, II — reflection down to the continuum, Archive for Mathematical Logic, Volume 60, issue 3-4, (2021), 495–523.

► The Ground Axiom (GA) asserts that there is no proper ground of the universe V.

Theorem 17. MM^{++} + "there are class many supercompact cardinals" is consistent with GA.

Proof. MM^{++} is preserved by $<\omega_2$ -directed closed forcing (Larson, Cox ^[8], Theorem 4.7). Starting from a model with cofinally many supercompact cardinals, use the first supercompact to force MM^{++} . Then the class forcing just like that in the proof of Laver's indestructibility theorem will produce a desired model. \Box (Theorem 17)

Corollary 18. (cf. [S.F. & Gappo & Parente]) The conclusion of Viale's Theorem: $\mathcal{H}(\aleph_2)^{\mathsf{V}} \prec_{\Sigma_2} \mathcal{H}(\aleph_2)^{\mathsf{V}[\mathbb{G}]} \quad \text{for all stationary preserving } \mathbb{P}$ and (V,\mathbb{P}) -generic \mathbb{G}

is consistent with GA.

Proof. By Viale's Absoluteness Theorem and Theorem 17.

(Corollary 18)

^[8] Sean D. Cox, Forcing axioms, approachability, and stationary set reflection, The Journal of Symbolic Logic Volume 86, Number 2, June 2021, 499–530.

Theorem 17. MM⁺⁺ + "there are class many supercompact cardinals" is consistent with GA.

Lemma 19. GA + $\mathfrak{b} > \aleph_1$ implies $\neg (ccc, \emptyset)_{\Sigma_2}$ -RcA and $\neg (ccc, \emptyset)_{\Pi_2}$ -RcA.

Cohen reals then we have $\Vdash_{\mathbb{P}}$ " $\mathfrak{b}=\aleph_1$ ". If $(ccc,\emptyset)_{\Sigma_2}$ -RcA⁺ holds then, since $\mathfrak{b}=\aleph_1$ is Σ_2 , there is a ground satisfying this equation. The ground must be different from V since $V\models\mathfrak{b}>\aleph_1$. This is a contradiction.

For $\neg(ccc,\emptyset)_{\Pi_1}$ -RcA⁺, argue similarly e.g. using the fact that $\mathfrak{b}<\mathfrak{d}$ is Π_2 .

Proof. Assume that $GA + MA + \neg CH$ holds. Let \mathbb{P} be a p.o. adding \aleph_1

▶ For $\neg (ccc, \emptyset)_{\Pi_1}$ -RcA⁺, argue similarly e.g. using the fact that $\mathfrak{b} < \mathfrak{d}$ is Π_2 . \square (Lemma 19)

Corollary 20.([S.F. & Gappo & Parente]) MM^{++} + "there are class many supercompact cardinals" does not imply the existence of a tightly \mathcal{P} -Laver gen. ultrahuge cardinal for any class \mathcal{P} of p.o.s containing p.o. for adding \aleph_1 many Cohen reals.

Proof. Work in ZFC + MM⁺⁺ + "there are class many supercompact cardinals" + GA (Theorem 17). By Lemma 19 and Theorem 12, this theory proves that there is no tightly \mathcal{P} -Laver-gen. ultrahuge cardinal.

Some (presumably relatively easiy) open problems Generic Absoluteness Revisited (20/21)

- ▶ Is the conclusion of Theorems 11 and 15 consistent with GA for $\mathcal P$ other than "stationary preserving" and with the continuum other than \aleph_2 ?
- \blacktriangleright Does (tightly) $\mathcal{P}\text{-Laver-gen.}$ supercompactness already imply $\neg\mathsf{GA}$?

Tightly super- $C^{(\infty)}$ \mathcal{P} -Laver-gen. ultrahuge cardinal

- ▶ The following strengthening of tightly \mathcal{P} -Laver-gen. ultrahugeness of κ (which is formulated in an axiom scheme) implies MP(\mathcal{P} , $\mathcal{H}(\kappa)$).
- ► For a natural number n, we call a cardinal κ super- $C^{(n)}$ -hyperhuge if for any $\lambda_0 > \kappa$ there are $\lambda \geq \lambda_0$ with $V_{\lambda} \prec_{\Sigma_n} V$, and j, $M \subseteq V$ s.t. $j : V \xrightarrow{\prec_{\kappa}} M$, $j(\kappa) > \lambda$, $j(\lambda)M \subseteq M$ and $V_{j(\lambda)} \prec_{\Sigma_n} V$.
- ▶ κ is super- $C^{(n)}$ -ultrahuge if the condition above holds with " $j(\lambda)M \subseteq M$ " replaced by " $j(\kappa)M \subseteq M$ and $V_{j(\lambda)} \subseteq M$ ".
- \triangleright If κ is super- $C^{(n)}$ -hyperhuge then it is super- $C^{(n)}$ -ultrahuge.
- ▶ We shall also say that κ is super- $C^{(\infty)}$ -hyperhuge (super- $C^{(\infty)}$ -ultrahuge, resp.) if it is super $C^{(n)}$ -hyperhuge (super- $C^{(n)}$ -ultrahuge, resp.) for all natural number n.
- ▶ A similar kind of strengthening of the notions of large cardinals which we call here "super- $C^{(n)}$ " appears also in Boney [Boney]. It is called " $C^{(n)+}$ ", and is considered there in connection with extendibility.

[Boney] Will Boney, Model Theoretic Characterizations of Large Cardinals, Israel Journal of Mathematics, 236, (2020), 133–181.

Tightly super- $C^{(\infty)}$ \mathcal{P} -Laver-gen. ultrahuge cardinal (2/6)

- For a natural number n and an iterable class $\mathcal P$ of p.o.s, a cardinal κ is super- $C^{(n)}$ $\mathcal P$ -Laver-generically ultrahuge (super- $C^{(n)}$ $\mathcal P$ -Laver-generically ultrahuge, for short) if, for any $\lambda_0 > \kappa$ and for any $\mathbb P \in \mathcal P$, there are a $\lambda \geq \lambda_0$ with $V_\lambda \prec_{\Sigma_n} V$, a $\mathcal P$ -name $\mathbb Q$ with $\Vdash_{\mathbb P}$ " $\mathbb Q \in \mathcal P$ ", and j, $M \subseteq V[\mathbb H]$ s.t. $j: V \xrightarrow{}_{\kappa} M$, $j(\kappa) > \lambda$, $\mathbb P$, $\mathbb H$, $V_{j(\lambda)}^{V[\mathbb H]} \in M$ and $V_{j(\lambda)}^{V[\mathbb H]} \prec_{\Sigma_n} V[\mathbb H]$.
- ightharpoonup A super- $C^{(n)}$ \mathcal{P} -Laver-generically ultrahuge cardinal κ is tightly super- $C^{(n)}$ \mathcal{P} -Laver-generically ultrahuge (tightly super- $C^{(n)}$ \mathcal{P} -Laver-gen. ultrahuge, for short), if $|\mathbb{P}*\mathbb{Q}| \leq j(\kappa)$.
- ▶ Super- $C^{(\infty)}$ \mathcal{P} -Laver-gen. ultrahugeness and tightly super- $C^{(\infty)}$ \mathcal{P} -Laver gen. ultrahugeness are defined similarly to super- $C^{(\infty)}$ ultrahugeness.
- Note that, in general, super- $C^{(\infty)}$ hyperhugeness and super- $C^{(\infty)}$ ultrahugeness are notions unformalizable in the language of ZFC without introducing a new constant symbol for κ since we need infinitely many $\mathcal{L}_{\varepsilon}$ -formulas to formulate them.

Tightly super- $C^{(\infty)}$ \mathcal{P} -Laver-gen. ultrahuge cardinal (3/6)

- Exceptions are when we are talking about a cardinal in a set model being with one of these properties, or when we are talking about a cardinal definable in V having these properties in an inner model. In the latter case, the situation is formalizable with infinitely may $\mathcal{L}_{\varepsilon}$ -sentences.

 Note that if κ is the \mathcal{P} -Laver gen. supercompact cardinal for a stationary preserving and iterable \mathcal{P} , then MA**(\mathcal{P} < κ) holds ([II]).
- ▶ In contrast, the super- $C^{(\infty)}$ \mathcal{P} -Laver gen. ultrahugeness of κ is expressible in infinitely many $\mathcal{L}_{\varepsilon}$ -sentences. This is because a \mathcal{P} -Laver gen. large cardinal κ for relevant classes \mathcal{P} of p.o.s is uniquely determined as κ_{tefl} or 2^{\aleph_0} (see e.g. [II] or [S.F.]).

Theorem 21. ([S.F. & Usuba]) Suppose that \mathcal{P} is an iterable class of p.o.s and κ is tightly super- $C^{(\infty)}$ \mathcal{P} -Laver-gen. ultrahuge. Then $(\mathcal{P},\mathcal{H}(\kappa))$ -RcA⁺ (i.e. MP $(\mathcal{P},\mathcal{H}(\kappa))$) holds.

Proof. Similarly to Theorem 12.

Corollary 21a. "there is a tightly super- C^{∞} (stationary preserving p.o.s)

-Laver-gen. hyperhuge cardinal" is strictly stronger than MM⁺⁺. \Box

- Tightly super- $C^{(\infty)}$ \mathcal{P} -Laver-gen. ultrahuge cardinal (4/6)
- ▶ Consistency of tightly super- $C^{(\infty)}$ \mathcal{P} -Laver-gen. ultrahuge cardinal for reasonable \mathcal{P} follows from 2-huge.
- Lemma 22. ([S.F. & Usuba]) Suppose that κ is 2-huge with the 2-huge elementary embedding j, that is, $j: V \xrightarrow{\prec}_{\kappa} M \subseteq V$, for some $M \subseteq V$ and $j^{2(\kappa)}M \subseteq M$. Then $V_{j(\kappa)} \models \text{``} \kappa$ is super- $C^{(\infty)}$ -hyperhuge cardinal", and for each $n \in \omega$, $V_{j(\kappa)} \models \text{``}$ there are stationarily many super- $C^{(n)}$ -hyperhuge cardinals".
- Theorem 23. ([S.F. & Usuba]) Suppose that μ is an inaccessible cardinal and κ is super- $C^{(\infty)}$ -hyperhuge in V_{μ} . Then there is a Laver function $f: \kappa \to V_{\kappa}$ for super- $C^{(\infty)}$ -hyperhugeness in V_{μ} .

Tightly super- $C^{(\infty)}$ \mathcal{P} -Laver-gen. ultrahuge cardinal (5/6)

- Theorem 24. ([S.F. & Usuba]) (1) Suppose that μ is inaccessible and $\kappa < \mu$ is super- $C^{(\infty)}$ -ultrahuge in V_{μ} . Let $\mathbb{P} = \operatorname{Col}(\aleph_1, \kappa)$. Then, in $V_{\mu}[\mathbb{G}]$, for any V_{μ} , \mathbb{P} -generic \mathbb{G} , $\aleph_2^{V_{\mu}[\mathbb{G}]}$ (= κ) is tightly super- $C^{(\infty)}$ σ -closed-Laver-gen. ultrahuge and CH holds.
- (2) Suppose that μ is inaccessible and $\kappa < \mu$ is super- $C^{(\infty)}$ -ultrahuge with a Laver function $f: \kappa \to V_{\kappa}$ for super- $C^{(\infty)}$ -ultrahugeness in V_{μ} . If $\mathbb P$ is the CS-iteration of length κ for forcing PFA along with f, then, in $V_{\mu}[\mathbb G]$ for any $(V_{\mu},\mathbb P)$ -generic $\mathbb G$, $\aleph_2^{V_{\mu}[\mathbb G]}$ $(=\kappa)$ is tightly super- $C^{(\infty)}$ proper-Laver-gen. ultrahuge and $2^{\aleph_0}=\aleph_2$ holds.
- (2') Suppose that μ is inaccessible and $\kappa < \mu$ is super- $C^{(\infty)}$ -ultrahuge with a Laver function $f: \kappa \to V_{\kappa}$ for super- $C^{(\infty)}$ -ultrahugeness in V_{μ} . If $\mathbb P$ is the RCS-iteration of length κ for forcing MM along with f, then, in $V_{\mu}[\mathbb G]$ for any $(V_{\mu}, \mathbb P)$ -generic $\mathbb G$, $\aleph_2^{V_{\mu}[\mathbb G]}$ (= κ) is tightly super- $C^{(\infty)}$ semi-proper-Laver-gen. ultrahuge and $2^{\aleph_0} = \aleph_2$ holds.

Tightly super- $C^{(\infty)}$ \mathcal{P} -Laver-gen. ultrahuge cardinal (6/6)

- (3) Suppose that μ is inaccessible and κ is super- $C^{(\infty)}$ -ultrahuge with a Laver function $f: \kappa \to V_{\kappa}$ for super- $C^{(\infty)}$ -ultrahugeness in V_{μ} . If $\mathbb P$ is a FS-iteration of length κ for forcing MA along with f, then, in $V_{\mu}[\mathbb G]$ for any $(V_{\mu},\mathbb P)$ -generic $\mathbb G$, 2^{\aleph_0} $(=\kappa)$ is tightly super- $C^{(\infty)}$ c.c.c.-Laver-gen. ultrahuge, and κ is very large in $V_{\mu}[\mathbb G]$.
- (4) Suppose that μ is inaccessible and κ is super- $C^{(\infty)}$ -ultrahuge with a Laver function $f: \kappa \to V_{\kappa}$ for super- $C^{(\infty)}$ -ultrahugeness in V_{μ} . If $\mathbb P$ is a FS-iteration of length κ along with f enumerating "all" p.o.s, then, in $V_{\mu}[\mathbb G]$ for any $(V_{\mu},\mathbb P)$ -generic $\mathbb G$, 2^{\aleph_0} (= \aleph_1) is tightly super- $C^{(\infty)}$ all p.o.s-Laver-gen. ultrahuge, and CH holds.

Bedrock of tightly \mathcal{P} -gen. hyperhuge cardinal

- ▶ Recall that a cardinal κ is hyperhuge, if for every $\lambda > \kappa$, there is $j: V \xrightarrow{\prec}_{\kappa} M \subseteq V$ s.t. $\lambda < j(\kappa)$ and $j(\lambda)M \subseteq M$. A hyperhuge cardinal κ can be characterized in terms of existence of κ -complete normal ultrafilters with certain additional properties (e.g. see [S.F. & Usuba]).
- For a class \mathcal{P} of p.o.s, a cardinal κ is tightly \mathcal{P} -generic hyperhuge (tightly \mathcal{P} -gen. hyperhuge, for short) if for any $\lambda > \kappa$, there is $\mathbb{Q} \in \mathcal{P}$ s.t. for a (V, \mathbb{Q}) -generic \mathbb{H} , there are j, $M \subseteq V[\mathbb{H}]$ s.t. $j: V \xrightarrow{\sim}_{\kappa} M$, $\lambda < j(\kappa)$, $|\mathbb{Q}| \leq j(\kappa)$, and $j''j(\lambda)$, $\mathbb{H} \in M$.
- For a class \mathcal{P} of p.o.s, a cardinal κ is tightly \mathcal{P} -Laver-generically hyperhuge (tightly \mathcal{P} -Laver-gen. hyperhuge, for short) if for any $\lambda > \kappa$, and $\mathbb{P} \in \mathcal{P}$ there is a \mathbb{P} -name \mathbb{Q} with $\Vdash_{\mathbb{P}}$ " $\mathbb{Q} \in \mathcal{P}$ " s.t. for a $(V, \mathbb{P} * \mathbb{Q})$ -generic \mathbb{H} , there are j, $M \subseteq V[\mathbb{H}]$ s.t. $j : V \xrightarrow{\sim}_{\kappa} M$, $\lambda < j(\kappa)$, $|\mathbb{P} * \mathbb{Q}| \leq j(\kappa)$, and $j''j(\lambda)$, $\mathbb{H} \in M$.

Bedrock of tightly \mathcal{P} -gen. hyperhuge cardinal (2/6)

For an itensible P. hyperhuge Hightly P-gen, hyperhuge HIGHTLY PLANER, gen. hy per huge tightly supe (60) P-Lane gen, hypenhuge tightly supo Cas P-Lace gan, Ultrahuge

Bedrock of tightly \mathcal{P} -gen. hyperhuge cardinal (3/6)

- ► For a cardinal κ , a ground W of the universe V is called a $\leq \kappa$ -ground if there is a p.o. $\mathbb{P} \in W$ of cardinality $\leq \kappa$ (in the sense of V) and (W, \mathbb{P}) -generic filter \mathbb{G} s.t. $V = W[\mathbb{G}]$.
- ► Let

$$\overline{W} := \bigcap \{W : W \text{ is a } \leq \kappa \text{-ground}\}.$$

Since there are only set many $\leq \kappa$ -grounds, \overline{W} contains a ground by Theorem 1.3 in [Usuba]. We shall call \overline{W} defined above the $\leq \kappa$ -mantle of V.

- ▶ The following theorem generalizes Theorem 1.6 in [Usuba].
- Theorem 25. ([S.F. & Usuba]) Suppose that \mathcal{P} is any class of p.o.s. If κ is a tightly \mathcal{P} -gen. hyperhuge cardinal, then the $\leq \kappa$ -mantle is the smallest ground of V (i.e. it is the bedrock of V) and it is also a $\leq \kappa$ -ground.

[Usuba] Toshimichi Usuba, The downward directed grounds hypothesis and very large cardinals, Journal of Mathematical Logic, Vol. 17(2) (2017), 1–24.

Bedrock of tightly \mathcal{P} -gen. hyperhuge cardinal (4/6)

Theorem 25. ([S.F. & Usuba]) Suppose that \mathcal{P} is any class of p.o.s. If κ is a tightly \mathcal{P} -gen. hyperhuge cardinal, then the $\leq \kappa$ -mantle is the smallest ground of V (i.e. it is the bedrock of V) and it is also a $< \kappa$ -ground.

A very rough sketch of the Proof.

- ▶ Analyzing the proof of Theorem 25, we also obtain:
- **Theorem 26.** ([S.F. & Usuba]) Suppose that \mathcal{P} is any class of p.o.s. If κ is a tightly \mathcal{P} -gen. hyperhuge cardinal, then κ is a hyperhuge cardinal in the bedrock \overline{W} of V.
- **Theorem 27.** ([S.F. & Usuba]) Suppose that \mathcal{P} is any class of p.o.s. If κ is a tightly super- $C^{(n)}$ \mathcal{P} -gen. hyperhuge cardinal, then κ is a super- C^n -hyperhuge cardinal in the bedrock \overline{W} of V.
- ▶ These Theorems have many strong consequences. Some of them are ...

Equiconsistency as the Eternal Recurrence

- Corollary 28.([S.F. & Usuba]) Suppose that \mathcal{P} is the class of all p.o.s. Then the following theories are equiconsistent:
 - (a) ZFC + "there is a hyperhuge cardinal".
 - (b)ZFC + "there is a tightly \mathcal{P} -Laver gen. hyperhuge cardinal".
 - (c)ZFC + "there is a tightly \mathcal{P} -gen. hyperhuge cardinal".
 - $(\mathrm{~d~})\mathsf{ZFC}+$ "bedrock $\overline{\mathsf{W}}$ exists and ω_1 is a hyperhuge cardinal in $\overline{\mathsf{W}}$ ". \Box
- Corollary 29.([S.F. & Usuba]) Suppose that \mathcal{P} is one of the following classes of p.o.s: all semi-proper p.o.s; all proper p.o.s; all ccc p.o.s; all σ -closed p.o.s. Then the following theories are equiconsistent:
 - (a)ZFC + "there is a hyperhuge cardinal".
 - (b)ZFC + "there is a tightly \mathcal{P} -Laver gen. hyperhuge cardinal".
 - (c)ZFC + "there is a tightly $\mathcal{P}\text{-gen.}$ hyperhuge cardinal".
 - $(\mathrm{\,d\,})\mathsf{ZFC} + \text{``bedrock }\overline{\mathsf{W}} \text{ exists and } \kappa_{\mathfrak{reff}} \text{ is a hyperhuge cardinal in }\overline{\mathsf{W}}\text{''}.$
 - Cf.: Theorem 24, and Theorem 27.

Equiconsistency as the Eternal Recurrence (2/2)

- Corollary 30.([S.F. & Usuba]) Suppose that \mathcal{P} is the class of all p.o.s. Then the following theories are equiconsistent:
 - (a)ZFC + "there is a tightly super- $C^{(\infty)}$ \mathcal{P} -Laver gen. hyperhuge cardinal".
 - (b)ZFC + "bedrock \overline{W} exists and ω_1^V is a super- $C^{(\infty)}$ -hyperhuge cardinal in \overline{W} ".
- Corollary 31.([S.F. & Usuba]) Suppose that \mathcal{P} is one of the following classes of p.o.s: all semi-proper p.o.s; all proper p.o.s; all ccc p.o.s; all σ -closed p.o.s. Then the following theories are equiconsistent:
 - (a)ZFC + "there is a tightly super- $C^{(\infty)}$ \mathcal{P} -Laver gen. hyperhuge cardinal".
- (b)ZFC + "bedrock \overline{W} exists and $\kappa_{\mathfrak{refl}}{}^{\mathsf{V}}$ is a super- $C^{(\infty)}$ -hyperhuge cardinal in \overline{W} ".

Toward the Laver-generic Maximum

- ▶ The existence of tightly super- $C^{(\infty)}$ \mathcal{P} -Laver gen. superhuge cardinal for the class \mathcal{P} of all semi-proper p.o.s is one of the strongest principle we considered so far. It implies the tightly super- $C^{(\infty)}$ \mathcal{P} -Laver gen. superhuge cardinal is $2^{\aleph_0} = \aleph_2$ and MM⁺⁺ holds (see [II] or [S.F.1]), the existence of the bedrock (Theorem 25), and $(\mathcal{P}, \mathcal{H}(\aleph_2))$ -RcA⁺ (Theorem 21).
- [Aspero-Schindler] David Asperó, and Ralf Schindler, Martin's Maximum++ implies Woodin's axiom (*). Annals of Mathematics, 193(3), (2021), 793-835.
- $\triangleright (\mathcal{P},\mathcal{H}(\aleph_2))$ -RcA⁺ claims that any property (even with any subset of ω_1 as parameter) forcable by a semi-proper p.o., is a theorem in some semi-proper ground. E.g. Cichón's Maximum is what happens in a semi-proper ground.
- ▶ Strong forms of Resurrection Axiom are also consequences of the existence of the super- $C^{(\infty)}$ (semi-proper)-Laver gen. large cardinal:

Toward the Laver-generic Maximum (2/4)

- ▶ Suppose that \mathcal{P} is a class of p.o.s and μ^{\bullet} is a definition of a cardinal (e.g. " \aleph_1 ", " \aleph_2 ", " 2^{\aleph_0} ")
- ▷ The following boldface version of the Resurrection Axioms is considered in [Hamkins-Johnstone]:
- $\mathbb{RA}^{\mathcal{P}}_{\mathcal{H}(\mu^{ullet})}$: For any $A\subseteq\mathcal{H}(\mu^{ullet})$ and any $\mathbb{P}\in\mathcal{P}$, there is a \mathbb{P} -name \mathbb{Q} of p.o. s.t. $\Vdash_{\mathbb{P}}$ " $\mathbb{Q}\in\mathcal{P}$ " and, for any $(V,\mathbb{P}*\mathbb{Q})$ -generic \mathbb{H} , there is $A^*\subseteq\mathcal{H}(\mu^{ullet})^{V[\mathbb{H}]}$ s.t. $(\mathcal{H}(\mu^{ullet})^V,A,\in)\prec(\mathcal{H}(\mu^{ullet})^{V[\mathbb{H}]},A^*,\in)$.
- **Theorem 32.** [S.F.1] For an iterable class of p.o.s \mathcal{P} , if $\kappa_{\mathfrak{refl}}$ is tightly \mathcal{P} -Laver-gen. superhuge, then $\mathbb{RA}^{\mathcal{P}}_{\mathcal{H}(\kappa_{\mathfrak{refl}})}$ holds.

[Hamkins-Johnstone] Joel David Hamkins, and Thomas A. Johnstone, Strongly uplifting cardinals and the boldface resurrection axioms, Archive for Mathematical Logic Vol.56, (2017), 1115–1133.

Toward the Laver-generic Maximum (3/4)

- ▶ With a Lever-genericity corresponding to a larger large cardinal, we obtain the "tight" version of Unbounded Resurrection Principle in [Tsaprounis]:
- $\begin{array}{ll} \operatorname{\mathsf{TUR}}(\mathcal{P}): & \text{For any } \lambda > \kappa_{\mathfrak{refl}} \text{, and } \mathbb{P} \in \mathcal{P} \text{, there exists a } \mathbb{P}\text{-name } \mathbb{Q} \\ & \text{with } \| \!\!\!-_{\mathbb{P}}``\mathbb{Q} \in \mathcal{P}``\text{ s.t., for } (\mathsf{V},\mathbb{P} * \mathbb{Q})\text{-gen. } \mathbb{H} \text{, there are } \lambda^* \in \mathsf{On}, \\ & \text{and } j_0 \in \mathsf{V}[\mathbb{H}] \text{ s.t. } j_0 : \mathcal{H}(\lambda)^\mathsf{V} \xrightarrow{\rightarrow}_{\kappa_{\mathfrak{refl}}} \mathcal{H}(\lambda^*)^{\mathsf{V}[\mathbb{H}]}, j_0(\kappa_{\mathfrak{refl}}) > \lambda, \text{ and } \\ \mathbb{P} * \mathbb{Q} \text{ is forcing equivalent to a p.o. of size } j_0(\kappa_{\mathfrak{refl}}). \end{array}$
- **Theorem 33.** [S.F.1] For an iterable class \mathcal{P} , if $\kappa_{\mathfrak{refl}}$ is tightly \mathcal{P} -Laver gen. ultrahuge, then $\mathsf{TUR}(\mathcal{P})$ holds.

[Tsaprounis] Tsaprounis, On resurrection axioms, The Journal of Symbolic Logic, Vol.80, No.2, (2015), 587–608.

Toward the Laver-generic Maximum (4/4)

- ▶ We can even establish the consistency of:
- $ightharpoonup 2^{\aleph_0}$ is tightly super- $C^{(\infty)}$ (semi-proper)-Laver gen. superhuge + (all p.o.s, $\mathcal{H}(\aleph_1)^{\overline{W}}$)-RcA
- A construction of a model: Work in a model V_{λ} where κ is super- $C^{(\infty)}$ -hyperhuge. Then $V_{\kappa} \prec V_{\lambda}$. Take an inaccessible $\delta < \kappa$ with $V_{\delta} \prec V_{\lambda}$. Use this to force (all p.o.s, $\mathcal{H}(\aleph_1)$)-RcA. κ is still super- $C^{(\infty)}$ -hyperhuge in the generic extension, so we can use it to force 2^{\aleph_0} to be tightly super- $C^{(\infty)}$ (semi-proper)-Laver gen. superhuge. (all p.o.s, $\mathcal{H}(\aleph_1)^{\overline{W}}$)-RcA survives this forcing.

▶ Open Problems:

- ▷ Is there any natural axiom which would imply the combination of the principles above?
- A (possibly) related question: Is there anything similar to HOD dichotomy for the bedrock under a (tightly generic/tightly Laver-generic) very large cardinal?

Recurrence Axioms are monotonic in parameters

For classes of p.o.s \mathcal{P} , \mathcal{P}' and sets A, A' of parameters, if $\mathcal{P} \subseteq \mathcal{P}'$ and $A \subseteq A'$, then we have (\mathcal{P}', A') -RcA \Rightarrow (\mathcal{P}, A) -RcA.

Note that, in general, we do not have similar implication between $MP(\mathcal{P}, A)$ and $MP(\mathcal{P}', A')$.

Proof of Propositions 5,6 and Lemma 7.

Proposition 5. If $\mathcal P$ contains a p.o. which adds a real, as well as a p.o. which (preserves \aleph_1^V but) collapses \aleph_2^V (e.g. $\mathcal P$ = proper p.o.s) then $(\mathcal P,\mathcal H(\kappa_{\mathfrak{refl}}))_{\Sigma_1}$ -RcA implies $2^{\aleph_0}=\aleph_2$.

Proof. Suppose that \mathcal{P} is as above and $(\mathcal{P}, \mathcal{H}(\kappa_{\mathfrak{refl}}))_{\Sigma_1}$ -RcA holds.

- ▶ $2^{\aleph_0} \ge \aleph_2$: Otherwise CH holds. Then $\mathcal{P}(\omega)^{\mathsf{V}} \in \mathcal{H}(\kappa_{\mathfrak{refl}})$. Hence " $\exists x \, (x \subseteq \omega \land x \notin \mathcal{P}(\omega)^{\mathsf{V}})$ " is a Σ_1 -formula with parameters from $\mathcal{H}(\kappa_{\mathfrak{refl}})$ and $\mathbb{P} \in \mathcal{P}$ adding a real forces (the formula in forcing language corresponding to) this formula.
- ightharpoonup By $(\mathcal{P}, \mathcal{H}(\kappa_{\mathfrak{refl}}))_{\Sigma_1}$ -RcA, the formula must hold in a ground. This is a contradiction.
- ▶ $2^{\aleph_0} \leq \aleph_2$: If $2^{\aleph_0} > \aleph_2$ then \aleph_1^{V} , $\aleph_2^{\mathsf{V}} \in \mathcal{H}(2^{\aleph_0}) \subseteq \mathcal{H}(\kappa_{\mathfrak{refl}})$. Let $\mathbb{P} \in \mathcal{P}$ be a p.o. which preserves \aleph_1 but collapses \aleph_2 .
- ▷ Letting $\psi(x, y)$ a Σ_1 -formula saying " $\exists f (f \text{ is a surjection from } x \text{ to } y)$ ", we have $\lVert \vdash_{\mathbb{P}} \psi((\aleph_1^{\mathsf{V}})^{\vee}, (\aleph_2^{\mathsf{V}})^{\vee})$ ".
- ho By $(\mathcal{P}, \mathcal{H}(2^{\aleph_0}))_{\Sigma_1}$ -RcA, the formula $\psi(\aleph_1^{\mathsf{V}}, \aleph_2^{\mathsf{V}})$ must hold in a ground. This is a contradiction. \Box

Proof of Propositions 5,6 and Lemma 7. (2/3)

Proposition 6. If $\mathcal P$ contains a p.o. which preserves \aleph_1^V but collapses \aleph_2 , and also a p.o. which collapses \aleph_1^V (e.g. $\mathcal P=$ all p.o.s) $\underline{\text{then}}\ (\mathcal P,\mathcal H(2^{\aleph_0}))_{\Sigma_1}\text{-RcA implies }2^{\aleph_0}=\aleph_1.$

Proof. We have $2^{\aleph_0} \leq \aleph_2$, by the second half of the proof of Proposition 5.

- ▶ If $2^{\aleph_0} = \aleph_2$, then $\aleph_1^{\mathsf{V}} \in \mathcal{H}(2^{\aleph_0})$.
- ightharpoonup Let $\mathbb{P} \in \mathcal{P}$ be a p.o. collapsing \aleph_1^V . I.e. $\Vdash_{\mathbb{P}}$ " \aleph_1^V is countable". Since " \cdots is countable" is Σ_1 , there is a ground M s.t. $M \models$ " \aleph_1^V is countable". This is a contradiction. \square (Proposition 6)

Proof of Propositions 5,6 and Lemma 7. (3/3)

- **Lemma 7.** (1) Suppose that $(\mathcal{P}, \mathcal{H}(\aleph_2))_{\Sigma_1}$ -RcA holds. Then all elements of \mathcal{P} are \aleph_1 -preserving and stationary preserving.
- (2) Assume $(\mathcal{P}, A)_{\Sigma_1}$ -RcA. If \mathcal{P} contains a p.o. adding a real, then $\mathcal{P}(\omega) \not\in A$. If \mathcal{P} contains a p.o. collapsing $\kappa > \omega$ then $\kappa \not\in A$.
- **Proof.** (1): Suppose otherwise and $\mathbb{P} \in \mathcal{P}$ is s.t. $\Vdash_{\mathbb{P}}$ " \aleph_1^{V} is countable". Note that $\omega, \aleph_1 \in \mathcal{H}(\kappa_{\mathfrak{refl}})$.
- ▶ By $(\mathcal{P}, \mathcal{H}(\kappa_{\mathfrak{refl}}))_{\Sigma_1}$ -RcA, it follows that there is a ground W of V s.t. W \models " \aleph_1 " is countable". This is a contradiction.
- ▶ Suppose that $\mathbb{P} \in \mathcal{P}$ destroy the stationarity of $S \subseteq \omega_1$. Note that ω_1 , $S \in \mathcal{H}(\aleph_2)$. Let $\varphi = \varphi(y,z)$ be the Σ_1 -formula $\exists x \, (y \text{ is a club subset of the ordinal } y \text{ and } z \cap x = \emptyset)$.

Then we have $\Vdash_{\mathbb{P}}$ " $\varphi(\omega_1, S)$ ". By $(\mathcal{P}, \mathcal{H}(\kappa_{\mathfrak{reff}}))_{\Sigma_1}$ -RcA, it follows that there is a ground W \subseteq V s.t. $S \in$ W and W $\models \varphi(\omega_1, S)$. This is a contradiction.

(2): By the first part of the proof of Proposition 5, and the proof of Proposition 6.

Proof of Theorem 12.

Theorem 12. ([S.F. & Gappo & Parente]) If κ is tightly \mathcal{P} -Laver-gen. ultrahuge for an iterable class \mathcal{P} . Then $(\mathcal{P}, \mathcal{H}(\kappa))_{\Gamma}$ -RcA⁺ holds.

Proof. We prove the case $\Gamma = \Sigma_2$.

 $p\text{-}Lg\text{-}Rc\text{A-O} \text{ in } \dots\text{-}revisited.pdf$

Lemma 12a. If α is a limit ordinal and V_{α} satisfies a large enough fragment of ZFC, then for any $\mathbb{P} \in V_{\alpha}$ and (V, \mathbb{P}) -generic \mathbb{G} , we have $V_{\alpha}[\mathbb{G}] = V_{\alpha}^{V[\mathbb{G}]}$.

- Assume that κ is tightly \mathcal{P} -Laver gen. ultrahuge for an iterable class \mathcal{P} of p.o.s. \triangleright Suppose that $\varphi = \varphi(x)$ is Σ_2 -formula (in $\mathcal{L}_{\varepsilon}$),
- * The general case of a Γ -formula is proved similarly. $a \in \mathcal{H}(\kappa)$, and $\mathbb{P} \in \mathcal{P}$ is s.t.
 - (a) $V \models \Vdash_{\mathbb{P}} " \varphi(a) "$.
- ▶ Let $\lambda > \kappa$ be s.t. $\mathbb{P} \in V_{\lambda}$ and
 - (0) $V_{\lambda} \prec_{\Sigma_n} V$ for a sufficiently large n.

In particular, we may assume that we have chosen the n above so that a sufficiently large fragment of ZFC holds in V_{λ} in the sense of Lemma 12a.

Proof of Theorem 12. (2/3)

Let \mathbb{Q} be a \mathbb{P} -name s.t. $\Vdash_{\mathbb{P}}$ " $\mathbb{Q} \in \mathcal{P}$ ", and for $(V, \mathbb{P} * \mathbb{Q})$ -generic \mathbb{H} , there are j, $M \subseteq V[\mathbb{H}]$ with

- (1) $j: V \xrightarrow{\prec}_{\kappa} M$,
- (2) $j(\kappa) > \lambda$,
- (3) $\mathbb{P} * \mathbb{Q}$, \mathbb{P} , \mathbb{H} , $V_{i(\lambda)}^{V[\mathbb{H}]} \in M$, and
- (4) $|\mathbb{P} * \mathbb{Q}| \leq j(\kappa)$.

By (4), we may assume that the underlying set of $\mathbb{P} * \mathbb{Q}$ is $j(\kappa)$ and $\mathbb{P} * \mathbb{Q} \in V_{i(\lambda)}^{\mathsf{V}}$.

Let $\mathbb{G} := \mathbb{H} \cap \mathbb{P}$. Note that $\mathbb{G} \in M$ by (3) and we have

Since $V_{j(\lambda)}^{M}$ (= $V_{j(\lambda)}^{V[\mathbb{H}]}$) satisfies a sufficiently large fragment of ZFC by elementarity of j, and hence the equality follows by Lemma 12a

(5)
$$V_{j(\lambda)}^{M} = V_{j(\lambda)}^{V[\mathbb{H}]} = V_{j(\lambda)}^{V[\mathbb{H}]}.$$

Thus, by (3), choice (0) of λ , and by the definability of grounds, we have $V_{i(\lambda)}^{\ \ \ \ \ \ \ \ \ \ } \in M$ and $V_{i(\lambda)}^{\ \ \ \ \ \ \ \ \ \ \ } [\mathbb{G}] \in M$.

Proof of Theorem 12. (3/3)

Claim 12b. $V_{j(\lambda)}^{\mathsf{V}}[\mathbb{G}] \models \varphi(a)$.

- \vdash By Lemma 12a, $V_{\lambda}{}^{\mathsf{V}}[\mathbb{G}] = V_{\lambda}{}^{\mathsf{V}[\mathbb{G}]}$, and $V_{j(\lambda)}{}^{\mathsf{V}}[\mathbb{G}] = V_{j(\lambda)}{}^{\mathsf{V}[\mathbb{G}]}$ by (5). By (0), both $V_{\lambda}{}^{\mathsf{V}}[\mathbb{G}]$ and $V_{j(\lambda)}^{\mathsf{V}}[\mathbb{G}]$ satisfy large enough fragment of ZFC. Thus
 - (6) $V_{\lambda}^{\mathsf{V}}[\mathbb{G}] \prec_{\Sigma_{1}} V_{j(\lambda)}^{\mathsf{V}}[\mathbb{G}].$

By (a) and (0) we have $V_{\lambda}^{\mathsf{V}}[\mathbb{G}] \models \varphi(a)$. By (6) and since φ is Σ_2 , it follows that $V_{j(\lambda)}^{\mathsf{V}}[\mathbb{G}] \models \varphi(a)$.

Thus we have

- (7) $M \models$ "there is a \mathcal{P} -ground N of $V_{j(\lambda)}$ s.t. $N \models \varphi(a)$ ".
- By the elementarity (1), it follows that
- (6) $V \models$ "there is a \mathcal{P} -ground N of V_{λ} s.t. $N \models \varphi(a)$ ".

Now by (0), it follows that there is a \mathcal{P} -ground W of V s.t. $\mathbb{Q} = \varphi(a)$. \mathbb{Q} (Theorem 12)

A very rough sketch of the Proof of Theorem 14.

Theorem 14. ([S.F. & Usuba]) Suppose that \mathcal{P} is any class of p.o.s. If κ is a tightly \mathcal{P} -gen. hyperhuge cardinal, then the $\leq \kappa$ -mantle is the smallest ground of V (i.e. it is the bedrock of V) and it is also a $\leq \kappa$ -ground.

A rough sketch of the Proof.

- ▶ Suppose that κ is tightly \mathcal{P} -gen. hyperhuge and let \overline{W} be the $\leq \kappa$ -mantle.
- ▶ By Theorem 1.3 in [Usuba], it is enough to show that, for any ground $W \subseteq \overline{W}$ is actually a $\leq \kappa$ -ground and hence $W = \overline{W}$ holds.
- ▶ Let W ⊆ W be a ground. Let μ be the cardinality (in the sense of V) of a p.o. $\mathbb{S} \in W$ s.t. there is a (W, \mathbb{S}) -generic \mathbb{F} s.t. $V = W[\mathbb{F}]$. W.l.o.g., $\mu \geq \kappa$.
- ▶ By Laver-Woodin Theorem, there is $r \in V$ s.t. $W = \Phi(\cdot, r)^V$ for an $\mathcal{L}_{\varepsilon}$ -formula Φ .
- Let $\theta \geq \mu$ be s.t. $r \in V_{\theta}$, and for a sufficiently large natural number n, we have $V_{\theta}^{\mathsf{V}} \prec_{\Sigma_n} \mathsf{V}$. By the choice of θ , $\Phi(\cdot, r)^{\mathsf{V}_{\theta}^{\mathsf{V}}} = \Phi(\cdot, r)^{\mathsf{V}} \cap V_{\theta}^{\mathsf{V}} = \mathsf{W} \cap V_{\theta}^{\mathsf{V}} = V_{\theta}^{\mathsf{W}}$. Let $\mathbb{Q} \in \mathcal{P}$ s.t. for (V, \mathbb{Q}) -generic \mathbb{H} , there are j, $M \subseteq \mathsf{V}[\mathbb{H}]$ with $j : \mathsf{V} \stackrel{\prec}{\to}_{\kappa} M$, $\theta < j(\kappa)$, $|\mathbb{Q}| \leq j(\kappa)$, $V_{j(\theta)}^{\mathsf{V}[\mathbb{H}]} \subseteq M$, and \mathbb{H} , $j''j(\theta) \in M$.
 - ... (back and forth with j) ... Thus $V_{\theta}^{\overline{W}} \subseteq V_{\theta}^{W}$. Since θ can be arbitrary large, It follows that $\overline{W} \subseteq W$.

Proof of Theorem 11.

- ▶ Suppose that $\mathbb{P} \in \mathcal{P}$ is s.t. $\Vdash_{\mathbb{P}}$ "BFA $_{<\kappa}(\mathcal{P})$ " and \mathbb{G} is a (V,\mathbb{P}) -generic set. Let $\varphi = \varphi(x)$ be a Σ_2 -formula in $\mathcal{L}_{\varepsilon}$, and $\varphi(x) = \exists y \, \psi(x,y)$ for a Π_1 -formula ψ in $\mathcal{L}_{\varepsilon}$. Let $\mu < \kappa$ and $a \in \mathcal{H}(\mu^+)$ ($\subseteq \mathcal{H}(\kappa)$). We have to show that $\mathcal{H}(\mu^+)^{V} \models \varphi(a) \Leftrightarrow \mathcal{H}((\mu^+)^{V[\mathbb{G}]})^{V[\mathbb{G}]} \models \varphi(a)$.
- Suppose first that $\mathcal{H}(\mu^+)^{\mathsf{V}} \models \varphi(a)$. Let $b \in \mathcal{H}(\mu^+)^{\mathsf{V}}$ be s.t. $\mathcal{H}((\mu^+)^{\mathsf{V}})^{\mathsf{V}} \models \psi(a,b)$. Since we have $\mathsf{V} \models \mathsf{BFA}_{<\kappa}(\mathcal{P})$ by Ikegami-Trang Theorem 10, it follows that $\mathcal{H}((\mu^+)^{\mathsf{V}[\mathbb{G}]})^{\mathsf{V}[\mathbb{G}]} \models \psi(a,b)$ by Bagaria's Absoluteness Theorem 2, and thus $\mathcal{H}((\mu^+)^{\mathsf{V}[\mathbb{G}]})^{\mathsf{V}[\mathbb{G}]} \models \varphi(a)$. Suppose now $\mathcal{H}((\mu^+)^{\mathsf{V}[\mathbb{G}]})^{\mathsf{V}[\mathbb{G}]} \models \varphi(a)$. By $(\mathcal{P},\mathcal{H}(\kappa))_{\Sigma_n \cup \Gamma}$ -RcA⁺, there is a \mathcal{P} -ground W of V s.t.
 - * W \models "BFA $_{<\mu^+}(\mathcal{P}) \land \mathcal{H}(\mu^+) \models \varphi(a)$ ".

Note that the formula in (*) is Σ_n if $n \geq 3$ and Γ if n = 2.

Proof of Theorem 11. (2/2)

Let $b \in \mathcal{H}((\mu^+)^{\mathsf{W}})^{\mathsf{W}}$ be s.t. $\mathsf{W} \models ``\mathcal{H}(\mu^+) \models \psi(a,b)"$. By Bagaria's Absoluteness Theorem 2, and since V is a \mathcal{P} -generic extension of W , it follows that $\mathsf{V} \models ``\mathcal{H}(\mu^+) \models \psi(a,b)"$ and hence $\mathcal{H}(\mu^+)^{\mathsf{V}} \models \varphi(a)$.

For the last statement of the present theorem, let φ be a Σ_2 -formula, and $a \in \mathcal{H}(\kappa)$. If $\mathcal{H}(\kappa) \models \varphi(a)$, then, by Lemma A1 below, there is $\mu < \kappa$ s.t. $\mathcal{H}(\mu^+) \models \varphi(a)$. By the first part of the theorem, it follows that $\mathcal{H}((\mu^+)^{\mathsf{V}[\mathbb{G}]})^{\mathsf{V}[\mathbb{G}]} \models \varphi(a)$. Thus $\mathcal{H}((\kappa^{(+)})^{\mathsf{V}[\mathbb{G}]})^{\mathsf{V}[\mathbb{G}]} \models \varphi(a)$ by Lemma A1. If $\mathcal{H}((\kappa^{(+)})^{\mathsf{V}[\mathbb{G}]})^{\mathsf{V}[\mathbb{G}]} \models \varphi(a)$, then there is $\mu < \kappa$ s.t. $\mathcal{H}((\mu^+)^{\mathsf{V}[\mathbb{G}]})^{\mathsf{V}[\mathbb{G}]} \models \varphi(a)$ (this is also shown using Lemma A1). Hence $\mathcal{H}((\mu^+)^{\mathsf{V}}) \models \varphi(a)$ by the first part of the theorem.

(Theorem 11)

Lemma A1. (Levy) $\mathcal{H}(\kappa) \prec_{\Sigma_1} V$ for any cardinal $\kappa > \aleph_0$.

Proof of Proposition 3

- **Proposition 3.** Suppose that \mathcal{P} is an iterable class of p.o.s and A a set (of parameters). (\mathcal{P}, A) -RcA⁺ is equivalent to MP (\mathcal{P}, A) .
- **Proof.** \blacktriangleright Suppose that (\mathcal{P}, A) -RcA⁺ holds. We show that MP (\mathcal{P}, A) holds. Let $\mathbb{P} \in \mathcal{P}$ be a push of the \mathcal{P} -button $\varphi(\overline{a})$.
- ⊳ Then we have $\Vdash_{\mathbb{P}}$ " $\varphi'(\overline{a})$ ". By (\mathcal{P}, A) -RcA⁺, there is a \mathcal{P} -ground W of V s.t. $\overline{a} \in W$ and W $\models \varphi'(\overline{a})$ holds.
- ightharpoonup By the definition (*) of φ' , it follows that $V \models \varphi(\overline{a})$ holds.
- Now suppose that $MP(\mathcal{P}, A)$ holds, and $\mathbb{P} \in \mathcal{P}$ is s.t. $\Vdash_{\mathbb{P}} "\varphi(\overline{a})"$ for $\overline{a} \in A$.
- ightharpoonup Let arphi'' be a formula saying:
 - (**) "there is a \mathcal{P} -ground N s.t. $\overline{x} \in N$ and $N \models \varphi(\overline{x})$ ". [9]

Then $\varphi''(\overline{a})$ is a \mathcal{P} -button and \mathbb{P} is its push.

By MP(\mathcal{P},A), $\varphi''(\overline{a})$ holds in V and hence there is a \mathcal{P} -ground W of V s.t. $\overline{a} \in W$ and $W \models \varphi(\overline{a})$. This shows (\mathcal{P},A)-RcA⁺.

[9a] Jonas Reitz, The Ground Axiom, JSL, Vol.72, No.4 (2007), 1299-1317.

 $^{^{[9]}}$ This is formalizable in the language of ZFC by Laver-Woodin Theorem. See:

^{[9}b] Joan Bagaria, Joel David Hamkins, Konstantinos Tsaprounis, Toshimichi Usuba, Superstrong and other large cardinals are never Laver indestructible, AML, Vol.55 (2016), 19–35.

Proof of Theorem 15.

Proof. Suppose that $\underline{\Vdash_{\mathbb{P}}}$ " $\mathcal{H}(\mu^+) \models \varphi(\overline{a})$ " for $\mathbb{P} \in \mathcal{P}$ with $\underline{\Vdash_{\mathbb{P}}}$ "BFA $_{<\kappa}(\mathcal{P})$ ", $\mu < \kappa$, Σ_2 -formula φ and for $\overline{a} \in \mathcal{H}(\mu^+)$.

- ▶ Let \mathbb{G} be a (V, \mathbb{P}) -generic set. Then we have
 - (1) $V[\mathbb{G}] \models \text{``BFA}_{<\kappa}(\mathcal{P}) \land \mathcal{H}(\mu^+) \models \varphi(\overline{a})\text{''}.$
- ▶ Let $\varphi = \exists y \psi(\overline{x}, y)$ where ψ is a Π_1 -formula in $\mathcal{L}_{\varepsilon}$. Let $b \in \mathcal{H}((\mu^+)^{V[\mathbb{G}]})^{V[\mathbb{G}]}$. be s.t. $\mathcal{H}((\mu^+)^{V[\mathbb{G}]})^{V[\mathbb{G}]} \models \psi(\overline{a}, b)$.
- ▶ Since κ is tightly \mathcal{P} -Laver-gen. huge, there is a \mathbb{P} -name \mathbb{Q} with $\Vdash_{\mathbb{P}}$ " $\mathbb{Q} \in \mathcal{P}$ " s.t., for $(\mathsf{V}, \mathbb{P} * \mathbb{Q})$ -generic \mathbb{H} with
 - (2) $\mathbb{G} \subseteq \mathbb{H}$ (under the identification $\mathbb{P} \not \subseteq \mathbb{P} * \mathbb{Q}$),

there are j, $M \subseteq V[\mathbb{H}]$ s.t. $j : V \xrightarrow{\prec}_{\kappa} M$,

- (3) $|\mathbb{P} * \mathbb{Q}| \le j(\kappa)$ (by tightness),
- (4) \mathbb{P} , $\mathbb{P} * \mathbb{Q}$, $\mathbb{H} \in M$ and
- (5) $j''j(\kappa) \in M$.

By (1), (2) and Bagaria's Absoluteness Theorem 2 (applied to $V[\mathbb{G}]$), we have $V[\mathbb{H}] \models "\psi(\overline{a}, b)"$ and hence $V[\mathbb{H}] \models "\mathcal{H}(\mu^+) \models \psi(\overline{a}, b)"$.

Proof of Theorem 15. (2/2)

- ▶ By (3), (4) and (5), there is a \mathbb{P} -name of b in M. By (4), it follows that $b \in M$. By similar argument, we have $\mathcal{H}((\mu^+)^{V[\mathbb{H}]})^{V[\mathbb{H}]} \subseteq M$ and hence $\mathcal{H}((\mu^+)^{V[\mathbb{H}]})^{V[\mathbb{H}]} = \mathcal{H}((\mu^+)^M)^M \in M$. Thus we have $M \models ``\mathcal{H}(\mu^+) \models \psi(\overline{a}, b)``$.
- ▶ By elementarity, it follows that $V \models ``\mathcal{H}(\mu^+) \models \exists y \psi(\overline{a}, y)"$, and hence $V \models ``\mathcal{H}(\mu^+) \models \varphi(\overline{a})"$ as desired.
- Suppose now that \mathbb{P} , μ , φ , \overline{a} are as above and assume that $V \models ``\mathcal{H}(\mu^+) \models \varphi(\overline{a})"$ holds. For Π_1 -formula ψ as above let $b \in \mathcal{H}(\mu^+)^V$ be s.t. $V \models ``\mathcal{H}(\mu^+) \models \psi(\overline{a},b)"$. Since $V \models \mathsf{BFA}_{<\kappa}(\mathcal{P})$ by assumption, it follows that $V[\mathbb{G}] \models \psi(\overline{a},b)$ by Bagaria's Absoluteness Theorem 2, and hence $V[\mathbb{G}] \models \varphi(\overline{a})$.

The last assertion of the theorem follows by the same argument as that given at the end of the proof of Theorem 11.

(Theorem 15.)

Additional slide 2: Identity crisis (or a resolution thereof)

▶ I am working on the following conjecture (suggested by G. Goldberg):

Proposition. A model with a/the tightly \mathcal{P} -Laver generically ultrahuge cardinal can be obtained starting from a model with an extendible cardinal.

Conjecture. A model with a/the tightly super- $C^{(\infty)}$ \mathcal{P} -Laver generically ultrahuge cardinal can be obtained starting from a model with a super- $C^{(\infty)}$ extendible cardinal, and this cardinal has relatively low consistency strength.

Additional slide 1: Identity crisis (or a resolution thereof)

- ▶ For many combination of \mathcal{P} , A, and Γ the exact consistency strength of $\mathsf{MP}(\mathcal{P},A)_{\Gamma}$ is known: they are usually quite low and compatible with V=L.
- \triangleright For example for $\mathcal{P}=$ ccc p.o.s, proper p.o.s, or semi-proper p.o.s, MP $(\mathcal{P},\mathcal{H}(2^{\aleph_0}))$ is known to be compatible with V=L.
- \triangleright An exception is when $\mathcal{P}=$ stationary preserving p.o.s. The known lower bound of $\mathsf{MP}(\mathcal{P},\mathcal{H}(2^{\aleph_0}))$ implies e.g. much nore than $0^\#$ exists.
- ▶ On the other hand.

Theroem 34. MM^{++} (or even MM^{++} with class many, stationarily many etc. supercompact cardinals) does not imply any of $\mathsf{MP}(\mathcal{P},\emptyset)$ for any non-trivial \mathcal{P} .

Proof. MM⁺⁺ (with class many supercompact cardinals) is compatible with GA (Ground Axiom) while MP(\mathcal{P} , \emptyset) for any non-trivial \mathcal{P} implies \neg GA. \Box

