Maximality Principles and Laver generic large cardinals

Generic Absoluteness Revisited
A joint work with Takehiko Gappo (&# &)
and 77 YF = X3+ XL 7 (Francesco Parente)
Sakaé Fuchino (M5 8)
Kobe University, Japan
https://fuchino.ddo. jp/index.html

(2024 4F 11 A 27 H (23:31 JST) printer version)

2024 £ 10 A 9 B (11:25~12:05 JST), RIMS Set Theory Workshop 2024*
2024 4 11 B 15 B (14:00~17:00JST),  Seminar with Yo matsubara and Francesco Parente, Kobe'
2024 £ 11 A 27 A (15:30 ~17:0.IST). Kobhe Set Theory Seminar

The following slides are typeset using uplATEX with beamer class, and
presented on GoodReader v.5.19.1202%  (Skim vesion 1.7.6" )

The most up-to-date version of these slides is downloadable as
https://fuchino.ddo. jp/slides/RINS2024-set-theory-fuchino-pf . pdf
The research is supported by
Kakenhi Grant-in-Aid for Scientific Research (C) 20K03717


https://fuchino.ddo.jp/index.html
https://sites.google.com/view/rims-set-theory-2024/home?pli=1
http://www2.kobe-u.ac.jp/~fuchino/kobe-set-theory-seminar/
https://apps.apple.com/us/app/goodreader-pdf-editor-viewer/id777310222
https://fuchino.ddo.jp/slides/RIMS2024-set-theory-fuchino-pf.pdf
Sakae Fuchino
2024 年 11 月 27 日 (15:30 ~17:0 JST), Kobe Set Theory Seminar

Sakae Fuchino
Maximality Principles and Laver generic large cardinals


References Generic Absoluteness Revisited (2/21)

[I] S.F., A.Ottenbreit Maschio Rodrigues, and H. Sakai, Strong downward
Lowenheim-Skolem theorems for stationary logics, Il
— reflection down to the continuum, Archive for Mathematical Logic, Vol.60,
3-4, (2021), 495-523.  https://fuchino.ddo. jp/papers/SDLS-1I-x.pdf

[S.F.1] S.F., Maximality Principles and Resurrection Axioms under a Laver
generic large cardinal, (note for “Maximality Principles and Resurrection Axioms
in light of a Laver generic large cardinal”, in preparation)
https://fuchino.ddo. jp/papers/RINS2022-RA-MP-x . pdf

[S.F. & Usuba] S.F., and T.Usuba, On Recurrence Axioms, preprint.
https://fuchino.ddo. jp/papers/recurrence-axioms-x.pdf

[S.F.2] S.F., Reflection and Recurrence, to appear in the Festschrift on the
occasion of the 75. birthday of Professor Janos Makowsky, Birkhduser, (2024).
https://fuchino.ddo. jp/papers/reflection_and_recurrence-Janos-Festschrift-x.pdf

[S.F. & Gappo & Parente] S.F., T.Gappo, and F. Parente,
Generic Absoluteness revisited, preprint.

https://fuchino.ddo. jp/papers/generic-absoluteness-revisited-x.pdf


https://fuchino.ddo.jp/papers/SDLS-II-x.pdf
https://fuchino.ddo.jp/papers/RIMS2022-RA-MP-x.pdf
https://fuchino.ddo.jp/papers/recurrence-axioms-x.pdf
https://fuchino.ddo.jp/papers/reflection_and_recurrence-Janos-Festschrift-x.pdf
https://fuchino.ddo.jp/papers/generic-absoluteness-revisited-x.pdf

Outline Generic Absoluteness Revisited (3/21)

>

v v Vv VvV Vv VvV VvV vV

v

References > Outline

Viale's Absoluteness Theorem

Bagaria's Absoluteness Theorem

Recurrence Axioms

Recurrence Axiom™ = Maximality Principle

Solution(s) of Continuum Problem under Recurrence Axiom
Consistency strength of Maximality Principles (= Recurrence Axioms™)
Generic absoluteness under restricted Recurrence Axioms

Tightly P-Laver-gen. ultrahuge cardinal

Generic absoluteness under P-Laver-gen. large cardinals

Ground Axiom and generic absoluteness

Tightly super C(°>*)-P-Laver-gen. ultrahuge cardinal > Bedrock of tightly
‘P-gen. hyperhuge cardinal > Equiconsistency as the Eternal Recurrence

> Toward the Laver-generic Maximum



Viale's Absoluteness Theorem Generic Absoluteness Revisted (4/21)
» We discuss “generalizations” of the following theorem (see GIEIENED E5D).

Theorem 1. (M.Viale, Theorem 1.4 in [1]) Assume that MM holds,
and there are class many Woodin cardinals. Then, for any station-
ary preserving p.o. P with |Fp“BMM?”, we have

H(R2)Y <5, H(Ng)V[G] for (V,P)-generic G. @

» MM™T is the double plus version of Martin's Maximum.

[ For any stationary preserving P, any family D of dense subsets of P with
| D| < Xz, and set S of P-names of stationary subsets of wy with | S| < Rz,

there is a D-generic filter G over P s.t. S[G] C ws is stationary for all S € S. ]

> BMM stands for Bounded Martin's Maximum.

[ For any stationary preserving IP, family D of dense subsets of P with
|D| < N5 s.t. each D € D is generated by D’ C D with | D’ | < Ry,

there is a D-generic filter G over P. |

[ Matteo Viale, Martin's maximum revisited, Archive of Mathematical Logic,
Vol.55, (2016), 295-316.



Bagaria's Absoluteness Theorem Generic Absoluteness Revsted (5/21)
Notation: For an ordinal a, let o) :=sup({| B|" : 8 < a}).
Note that o{*) = o if « is a cardinal. Otherwise, we have o) = | a|".

» Viale's Theorem 1. is based on Bagaria's Absoluteness Theorem.

Theorem 2. (Bagaria's Absoluteness Theorem, Theorem 5 in [?)
For an uncountable cardinal x and a class P of p.o.s closed under
forcing equivalence, and restriction, the following are equivalent:

(a) BFA-L(P).
(b) Forany Pe P, Xi-formula ¢ in L. and a € H(k), |Fp“p(a)” & ¢(a).
(c) Forany P e P and (V,P)-generic G, H(x)V <5, H((x))VIE)VIE]

» BFA_ .(P) is the Bounded Forcing Axiom for P.

[ For any P € P and any family of D dense subsets of P with | D |< k, and
s.t. each D € D is generated by some D’ C D with | D' | < &, ... |

] Joan Bagaria, Bounded forcing axioms as principles of generic absoluteness,
Archive of Mathematical Logic, Vol.39, (2000), 393-401.



Recurrence Axioms Generic Absoluteness Revisited (6/21)

» Recurrence Axiom for a class P of p.o.s and a set A ([S.F. & Usuba])
is the axiom scheme expressing:

(P, A)-RcA : For any L.-formula ¢ = ¢(X) and 3 € A,
if |Fp“@(a)” fora P € P, _then
there is a ground W of the universe V s.t. 3 € W and W = ¢(3).

*  An inner model W of V is called a ground if there is a p.o. P € W and
(W, P)-generic G s.t. V = W[G].



Recurrence Axiom (2/2) Generc Absoluteess Revited (7/21)

» The following is a natural strengthening of the Recurrence Axiom

([S.F. & Usuba]):

(P, A)-RcAT : For any L.-formula ¢ = ¢(x) and any 3 € A,
if |Fp“@(3)” for a P € P, _then
there is a P-ground W of the universe V s.t. 3 € W and W | ¢(3).

* An inner model W of V is called a P-ground if there is a p.o. P € W with
W =“P € P”, and (W, P)-generic G s.t. V = W[G].



Recurrence Axiom™T = Maximality Principle Generic Absoluteness Revisted (8/21)

» A non-empty class P of p.o.s is iterable if it satisfies: © {1} € P,
(@ P is closed w.r.t. forcing equivalence (i.e. if P € P and P ~ P’
then P’ € P), @ closed w.r.t. restriction, and 3 for any P € P
and P-name Q, |-p“Q € P” implies P+ Q € P.

* For an iterable P, an L.-formula ¢(3) with parameters 3 (€ V) is said to

be a P-button if there is P € P s.t. for any P-name Q of p.o. with
H_PLL @ c 7)77’ we have ”—P*Q «@ @(5) ”

* If p(3) is a P-button then we call P as above a push of the button ¢(3).

» The Maximality Principle MP(P, A) for an iterable P is the
assertion expressed as an axiom scheme in £. (Hamkins [¥):

MP(P,A): For any L.-formula ¢(X) and a € A, if ¢(3) is a P-button
then ¢(3) holds.

B3l Joel Hamkins, A simple maximality principle, The Journal of Symbolic
Logic, Vol.68, no.7, (2003), 527-550.



Recurrence Axiom™ = Maximality Principle (2/2)  Gasic Asdutres R 3121
Proposition 3. Suppose that P is an iterable class of p.o.s and A a

set (of parameters). (P, A)-RcAt is equivalent to MP(P, A).
Inner Model Hypothesis (IMH) (Sy-D. Friedman) If a property ¢

holds in an inner model of an outer model, then there is an inner
model of the universe which also satisfies the property ¢.

Proposition 4. For a class P of p.o.s with {1} € P and a set A (of
parameters), (P, A)-RcAT is equivalent to the ZFC version of IMH :

For any L.-formula ¢ = ¢(X) and any 3@ € A, if a P € P forces “there
is a ground M with 3 € M satisfying ¢(a)", then there is a P-ground W
of Vst.aeWand W = ¢(3). 5]

» These equivalences in Propositions 3, 4 are also mentioned in 4.

[l Neil Barton, Andrés Eduardo Caicedo, Gunter Fuchs, Joel David Hamkins,
Jonas Reitz, and Ralf Schindler, Inner-Model Reflection Principles, Studia
Logica, Vol.108, (2020),573-595.
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Proposition 3. Suppose that P is an iterable class of p.o.s and A a set (of parameters). (P,A)-RcA+ is equivalent to MP(P,A).


Solution(s) of Continuum Problem under Recurrence Axiom  Genic Absohteness Revste (10/21)

» For a family I' of formulas (in £.), we consider the following restricted
version of Recurrence Axiom:

(P,A)r—RcA+ : For any I -formula ¢ = ¢(X) and 3 € A, _if_
IFp“ @(a)” for a P € P, _then
there is a P-ground W of the universe Vs.t.a € Wand W = ¢(3).

> Let Koefl 1= max{Ng, 2N°}.

Keefi is a cardinal which appears as the reflection point (cardinal &
s.t. ref[ectlon down to < k holds) in many natural reflection principles.

Also we have Krefi = the tightly P-Laver-gen. large cardinal for many
natural settings of P and “large cardinal” if the generic large cardinal exists

Proposition 5. ([S.F. & Usuba]) If P contains a p.o. which adds
a real, as well as a p.o. which (preserves NV but) collapses N,V
(e.g. P = proper p.o.s), then (P, H (ki ))x,-RcA implies 280 = Ry

Proposition 6. ([S.F. & Usuba]) If P contains a p.o. which preserves
R;Y but collapses Ny, and also a p.o. which collapses ®;V (e.g.
P = all p.o.s), then (P, H(2%0))s,-RcA implies 280 = N;.



Solution(s) of Continuum Problem under Recurrence Axiom (2,3 )Gererc Absolteness Revste (11/21)

Proposition 5. ([S.F. & Usuba]) If P contains a p.o. which adds
a real, as well as a p.o. which (preserves N but) collapses R,V
(e.g. P = proper p.o.s), then (P, H (ki ))x,-RcA implies 280 — N,

Proposition 6. ([S.F. & Usuba]) If P contains a p.o. which preserves
N1V but collapses N5, and also a p.o. which collapses R;" (e.g.
P = all p.o.s), then (P, H(2%°))s,-RcA implies 2% = ;.

» In Proposition 5, | put “preserves X1V but” in parentheses because
of the following Lemma 7, (1):

Lemma 7. ([S.F. & Usuba]) (1) Suppose that (P, H(X2))s,-RcA
holds. Then all elements of P are stat. preserving.

(2) Assume (P, A)s,-RcA. If P contains a p.o. adding a real, then
P(w) & A. If P contains a p.o. collapsing k > w then k & A.

> Lemma 7, (2) shows that H (k) and H(2%°) in Recurrence Axioms

in Lemmas 5,6 are maximal possible.



Solution(s) of Continuum Problem under Recurrence Axiom (3/3)Geneic Abotenes Reisted (12/2)

Proposition 8. Suppose that all P € P preserve cardinals, and P
contains p.o.s adding at least k many reals for each x € Card
(This is the case e.g. if P = ccc p.o.s). Then

(a) (P,0)s,-RcAT implies that 2%° is very large.

(b) (P, H(2%0))s,-RcAT implies that 2% is a limit cardinal.
Thus, if 2%° is regular in addition, then 2% is weakly inaccessible.

(c) If there is a weakly inaccessible cardinal above 2%°, then
(P, H(2%°))s,-RcAT implies that 2%¢ is a limit of inaccessible cardinals.

Proof. (a): To prove e.g. that 2% > R, let P € P be s.t.

[Fp“2% > R, ”. Then by (P,0)s,-RcA™, there is a P-ground W of V

s.t. W = 2% > X,,. Since V is P-gen. extension of W and P preserves
cardinals, it follows that V |= 2% > X

(b): Suppose u < 2%, Then p € H(2%). Thereis P € P s.t.

[Fp“2% > ut”. By (P, H(2%))s,-RcAT, it follows that there is a
P-ground W of V which satisfies this statement. Since P preserves

cardinals it follows that V = 2% > p*.  (c): ... (Proposition 8)



Consistency strength of Maximality Principles (= Recurrence Axioms'l') Generi AbsolutenessRevsted (13/21)

» Maximality Principles and hence also Recurrence Axioms have
relatively low consistency strength.

Theorem 9. (Hamkins Bl Aspers 151) The following theories are
equiconsistent to each other and they are also equiconsistent with
ZFC + there are stationarily many inaccessibles:

ZFC + MP(all p.o.s, H(2%)), ZFC + MP(c.c.c p.o.s, H(2%0)),
ZFC + MP(proper p.o.s, H(2%°)),
ZFC + MP(semi-proper p.o.s, H(2%°)). @

» Caution!! The exact consistency strength of ZFC + MP(stationary

preserving p.o.s, H(2%)) is not known and its lower bound is much
higher than the consistency strength in Theorem 9.

B3 Joel Hamkins, A simple maximality principle, The Journal of Symbolic
Logic Vol.68, no.7, (2003), 527-550.

11 David Aspers, A Maximal Bounded Forcing, The Journal of Symbolic
Logic, Vol.67, No.1 (2002), 130-142.



Generic absoluteness under restricted Recurrence Axioms  Generic Absolutenss Revised (14/21)

» The following Ikegami-Trang Absoluteness Theorem extends
Theorem 10. (lkegami, and Trang [?1) For an iterable class P of

p.o.s, and a cardinal k the following are equivalent:
(a) (P, H(x)),-ReAT.  (b) (P, H(x)),-ReA. (c) BFAL(P). (@

> Theorem 10 together with Proposition 5 implies
BFA. .., (Proper p.o.s) — 2% =Xy,

Theorem 11. ([S.F.& Gappo& Parente]|) Suppose that P is an
iterable ¥ ,-definable class of p.o.s for n > 2 and (P, H(k))s,ur-RcA™
holds for an uncountable cardinal x where T is a set of formulas
which are conjunction of a ¥,-formula and a [y-formula.

> Then, for any P € P s.t. |Fp“ BFA<.(P)”, we have
H(pt) <5, H(uH)VIE for all 4 < & and for (V,P)-generic G.

> Thus, we have H(x)V <x, H((x(H))VICI)VIE]

[ Dajsuke lkegami and Nam Trang, On a class of maximality principles, Archive
for Mathematical Logic, Vol. 57, (2018), 713-725.



Tightly P-Laver-gen. ultrahuge cardinal Generic Absoluteness Revsted (15/21)

» For an iterable class P of p.o.s, a cardinal & is said to be (tightly)
P-Laver-generically ultrahuge, if
for any A >« and P € P there is a P-name Q with |Fp“Q € P”, s.t. for
(V, P+ Q)-generic H, there are j, M C V[H] s.t. j : V S M, j(K) > A,
P, H, (Vi)Y € M and [P+ Q| < j(x) (more precisely: Px Q is forcing
equivalent to a p.o. of size <j(k)).

Theorem 12. ([S.F. & Gappo & Parente]) If « is tightly P-Laver-gen.
ultrahuge for an iterable class P. Then (P, H(k))r-RcA™ holds.

* [ = conjunctions of ¥» and [, formulas. »On the other hand:

Theorem 13. ([S.F.1]) Tightly P-Laver-gen. ultrahugeness does not
imply MP(P, 0) (under the assumption of a large cardinal slightly
more than the ultrahuge). I5)

> The proof of Theorem 13 can be modified to show the non-implication of
(P,0)n,-RcA from a generic large cardinal for many instances of P.

“I'" in Theorem 12 for such P is almost optimal.


Sakae Fuchino
Theorem 12. ([ S.F. & Gappo & Parente ] ) If κ is tightly P-Laver-gen. ultrahuge for an iterable class P. Then (P,H(κ))Γ-RcA+ holds.

Sakae Fuchino
* Γ = conjunctions of Σ2 and Π2 formulas.
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» The following is a corollary of Theorem 11 (and Theorem 12 for (2)) :

Corollary 14. (1) Suppose that (P, H(x))-RcAt holds for an iter-
able P. Then, for for any P € P s.t. |Fp“ BFAL(P)”, we have
H(pt)Y <5, H(uH)VIE for all p < x and for (V,P)-generic G.
Thus, H(k)Y <5, H((xHHVIEL

(2) Suppose that  is tightly P-Laver-gen. ultrahuge for an iterable and
Y »-definable P. Then, for for any P € P s.t. |Fp“BFAL (P)”, we
have H(ut)Y <g, H(uH)VIE! for all u < x and for (V,P)-generic G.
Thus, H(k)Y <5, H((xHHVIE]L i)

» By a direct proof, we can improve (2) of the Corollary 14:

Theorem 15.([S.F. & Gappo & Parente] ) For an iterable class P of
p.o.s, suppose that BFA. . (P) holds, and & is tightly P-Laver-gen.
huge. Then, for any P € P s.t. |Fp“BFA_.(P)”, we have
H(pt) <5, H(ut)VIE forall 4 < & and for (V,P)-generic G.
Thus, H(x)V <5, H((xH))VIEHVIC]




Generic absoluteness under P-Laver-gen. large cardinals (2/2) Generc Absoteness Revste (17/21)

Theorem 15.([S.F. & Gappo & Parente] ) For an iterable class P of
p.o.s, suppose that BFA. . (P) holds, and & is tightly P-Laver-gen.
huge. Then, for any P € P s.t. |Fp“BFA_.(P)”, we have
H(pt) <5, H(ut)VIE for all 4 < & and for (V,P)-generic G.
Thus, H(x)V <5, H((xH))VIEHVIC]

> BFA_ .(P) in the assumption of Theorem 15 is absorbed in the
Laver-genericity part of the assumption if we assume the Lever-genericity
for a slightly (?) stronger notion of large cardinal:

Theorem 16. ("1, see also [S.F.& Gappo & Parente]) (1) Sup-
pose that x is P-Laver-gen. supercompact. Then FA. .(P) holds.

(2) If all elements of the class P of p.o.s are stationary preserving
and r is P-Laver-gen. supercompact, then FAZS "(P) holds. [
1S F., A. Ottenbreit Maschio Rodrigues, and H. Sakai, Strong

Léwenheim-Skolem theorems for stationary logics, Il — reflection down to the
continuum, Archive for Mathematical Logic, Volume 60, issue 3-4, (2021),

495-523.




Ground Axiom and generic absoluteness Generic Absluteness Rvisted (18/21)
» The Ground Axiom (GA) asserts that there is no proper ground of

the universe V.
Theorem 17. MM + "there are class many supercompact cardinals”

is consistent with GA.

Proof. MM™ is preserved by < ws-directed closed forcing (Larson,

Cox [81, Theorem 4.7). Starting from a model with cofinally many

supercompact cardinals, use the first supercompact to force MM™*. Then

the class forcing just like that in the proof of Laver's indestructibility

theorem will produce a desired model. (Theorem 17)

Corollary 18. (cf. [S.F.& Gappo& Parente]) The conclusion of Viale's Theorem:
H(R,)Y <5, H(R2)VIC]  for all stationary preserving PP
and (V,P)-generic G
is consistent with GA.
Proof. By Viale's Absoluteness Theorem and Theorem 17.

[d (Corollary 18)
(81 Sean D. Cox, Forcing axioms, approachability, and stationary set reflection,
The Journal of Symbolic Logic Volume 86, Number 2, June 2021, 499-530.
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Theorem 17. MM™ T + “there are class many supercompact cardinals”

is consistent with GA.
Lemma 19. GA + b > Ry implies = (ccc, 0)x,-RcA and = (ccc, O)n,-
RcA.
Proof. Assume that GA + MA + —CH holds. Let P be a p.o. adding N;
Cohen reals then we have |Fp“b = N;”. If (ccc,P)s,-RcA™ holds then,
since b = Wy is X, there is a ground satisfying this equation. The ground

must be different from V since V |= b > R;. This is a contradiction.

» For - (ccc, ®)n,-RcAt, argue similarly e.g. using the fact that b < 0 is M.
(Lemma 19)

Corollary 20.([S.F.& Gappo& Parente]) MM™ + “there are class
many supercompact cardinals” does not imply the existence of a
tightly P-Laver gen. ultrahuge cardinal for any class P of p.o.s
containing p.o. for adding X; many Cohen reals.

Proof. Work in ZFC + MM™" + “there are class many supercompact cardinals”

+ GA (Theorem 17). By Lemma 19 and Theorem 12, this theory proves
that there is no tightly P-Laver-gen. ultrahuge cardinal. (Corollary 20)



Some (presumably relatively easiy) open problems  Geeic Assohtenss Revsted (20/21)

» |s the conclusion of Theorems 11 and 15 consistent with GA for P
other than “stationary preserving” and with the continuum other

than Ny ?

» Does (tightly) P-Laver-gen. supercompactness already imply —=GA 7
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Tightly super-C(>) P-Laver-gen. ultrahuge cardinal
The following strengthening of tightly 7P-Laver-gen. ultrahugeness of
# (which is formulated in an axiom scheme) implies MP(P, H(k)).

For a natural number n, we call a cardinal x super-C(")-hyperhuge

if for any Ao > & there are A > \g with V) <y V,and j, M CV
st.j:V S M, j(k) >\ VM C M and Vi <5, V.

k is super-C("M-ultrahuge if the condition above holds with

“JIMM C M replaced by “J"IM C M and V) € M".

If & is super-C("M-hyperhuge then it is super-C("-ultrahuge.

We shall also say that  is super-C(°)-hyperhuge
(super-C(>)_ultrahuge, resp.) if it is super C("-hyperhuge
(super-C("-ultrahuge, resp.) for all natural number n.

A similar kind of strengthening of the notions of large cardinals which

we call here “super-C("" appears also in Boney [Boney]. It is called
“C(M+" and is considered there in connection with extendibility.

[Boney] Will Boney, Model Theoretic Characterizations of Large Cardinals, Israel

Journal of Mathematics, 236, (2020), 133-181.



Tightly super-C(®) P-Laver-gen. ultrahuge cardinal (2/6)

» For a natural number n and an iterable class P of p.o.s, a cardinal «
is super-C(") P-Laver-generically ultrahuge (super-C(") P-Laver-gen.
ultrahuge, for short) if, for any A\g > « and for any P € P, there are
a A > Ao with V), <y, V, a P-name @ with H—]p“ @ € P”, and J,

M CV[H] st. j:V S5, M, j(k) >\ P, H, Vi)Vl € M and
Vioy VI <5, VIH].

> A super-C(") P-Laver-generically ultrahuge cardinal & is tightly
super-C(") P-Laver-generically ultrahuge (tightly super-C(")
P-Laver-gen. ultrahuge, for short), if [P+ Q| < j(x).

» Super-C(>) P-Laver-gen. ultrahugeness and tightly super-C(°®) P-Laver
gen. ultrahugeness are defined similarly to super-C(>) ultrahugeness.

%)

» Note that, in general, super-C(°) hyperhugeness and super-C!

ultrahugeness are notions unformalizable in the language of ZFC
without introducing a new constant symbol for  since we need

infinitely many £.-formulas to formulate them.

> Exceptions are ...



Tightly super-C(®) P-Laver-gen. ultrahuge cardinal (3/6)
> Exceptions are when we are talking about a cardinal in a set model
being with one of these properties, or when we are talking about a
cardinal definable in V having these properties in an inner model. In

the latter case, the situation is formalizable with infinitely may
Note that if k is the P-Laver gen. supercompact cardinal for a
Eg—sentences. stationary preserving and iterable P, then MA**(<k) holds ([Il] ).

» In contrast, the super-C(°°) P-Laver gen. ultrahugeness of « is
expressible in infinitely many L.-sentences. This is because a
P-Laver gen. large cardinal  for relevant classes P of p.o.s is
uniquely determined as rj or 2% (see e.g. [1I] or [S.F.]).

Theorem 21. ([S.F. & Usuba]) Suppose that P is an iterable class
of p.o.s and & is tightly super-C(°°) P-Laver-gen. ultrahuge. Then
(P, H(r))-RcAT (i.e. MP(P,H(x)) ) holds.

Proof. Similarly to Theorem 12. [

Corollary 21a. “there is a tightly super-C> (stationary preserving p.o.s)
-Laver-gen. hyperhuge cardinal” is strictly stronger than MM™ " [


Sakae Fuchino
Theorem 21. ([ S.F. & Usuba ] ) Suppose that P is an iterable class of p.o.s and κ is super-C(∞) P-Laver-gen. ultrahuge. Then (P,H(κ))-RcA+ (i.e. MP(P,H(κ)) ) holds.

Sakae Fuchino

Sakae Fuchino
Note that if κ is the 𝓟-Laver gen. supercompact cardinal for a stationary preserving and iterable 𝓟, then MA⁺⁺(𝓟<κ) holds ( [II] ). 


Tightly super-C() P-Laver-gen. ultrahuge cardinal (4/6)
» Consistency of tightly super-C(°°) P-Laver-gen. ultrahuge cardinal
for reasonable P follows from 2-huge.

Lemma 22. ([S.F. & Usuba]) Suppose that & is 2-huge with the
2-huge elementary embedding j, that is, j : V . M CV, for
some M C V and /*(\IM C M. Then
Vi) E“ ki is super-C(®)_hyperhuge cardinal”, and for each n € w,
V() =" there are stationarily many super-C(M-hyperhuge cardinals’.

I}

Theorem 23. ([S.F. & Usuba]) Suppose that p is an inaccessible
cardinal and & is super-C(®)-hyperhuge in Vy,. Then there is a
Laver function f : kK — V,, for super-C(®)-hyperhugeness in V.. &



Tightly super-C(*) P-Laver-gen. ultrahuge cardinal (5/6)

Theorem 24. ([S.F. & Usuba]) (1) Suppose that pu is inaccessible
and k < p is super-C(®)-ultrahuge in Vy. Let P = Col(Xy, ).
Then, in V,[G], for any V,,,P-generic G, N;/“[G] (= k) is tightly
super-C(®°) g-closed-Laver-gen. ultrahuge and CH holds.

(2) Suppose that y is inaccessible and & < i is super-C(*)-ultrahuge
with a Laver function f : k — V,, for super-C(°)-ultrahugeness
in V,,. If Pis the CS-iteration of length & for forcing PFA along
with f, then, in V,[G] for any (V,,P)-generic G, N;/“[G] (= k)
is tightly super-C(®) proper-Laver-gen. ultrahuge and 2% = X,
holds.

(2) Suppose that y is inaccessible and & < 1 is super-C(*)-ultrahuge
with a Laver function f : k — Vi, for super-C(®)-ultrahugeness in
V.. If Pis the RCS-iteration of length & for forcing MM along with
f, then, in V,,[G] for any (V,,, P)-generic G, N;/“[G] (= k) is tightly
super-C(®) semi-proper-Laver-gen. ultrahuge and 2% = R, holds.



Tightly super-C() P-Laver-gen. ultrahuge cardinal (6/6)

(3) Suppose that p is inaccessible and & is super-C(*)-ultrahuge with a
Laver function f : k — V, for super-C(>)-ultrahugeness in V. If
P is a FS-iteration of length x for forcing MA along with £, then, in
V,.[G] for any (V,,,P)-generic G, 2% (= k) is tightly super-C(*°)
c.c.c.-Laver-gen. ultrahuge, and & is very large in V,,[G].

(4) Suppose that p is inaccessible and & is super-C(®)_ultrahuge with
a Laver function f : k — Vi, for super-C(°)-ultrahugeness in V.
If P is a FS-iteration of length x along with £ enumerating “all”
p.o.s, then, in V,[G] for any (V,,,P)-generic G, 2% (= Xy) is
tightly super-C(®) all p.o.s-Laver-gen. ultrahuge, and CH holds.

1)



Bedrock of tightly P-gen. hyperhuge cardinal
» Recall that a cardinal x is hyperhuge, if for every A\ > k&, there is
jiVS.MCVst A < j(r) and /MM C M. A hyperhuge
cardinal x can be characterized in terms of existence of k-complete
normal ultrafilters with certain additional properties (e.g. see [S.F.

& Usuba]).

» For a class P of p.o.s, a cardinal « is tightly P-generic hyperhuge
(tightly P-gen. hyperhuge, for short) if for any A\ > &, there is
Q € P s.t. for a (V, Q)-generic H, there are j, M C V[H] s.t.

J V350 M, X< j(k), |Q] <j(k), and j"j(A),H € M.
» For a class P of p.o.s, a cardinal « is tightly P-Laver-generically

hyperhuge (tightly P-Laver-gen. hyperhuge, for short) if for any
A >k, and PP € P there is a P-name Q with [Fp“Q € P” s.t. for a

(V,P % Q)-generic H, there are j, M C V[H] s.t. j: V =5, M,

~

A < (), [P*Q] < j(x), and j"j(\), H € M.



Bedrock of tightly P-gen. hyperhuge cardinal (2/6)
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Bedrock of tightly P-gen. hyperhuge cardinal (3/6)
» For a cardinal k, a ground W of the universe V is called a
< k-ground if there is a p.o. P € W of cardinality <k (in the sense
of V) and (W, P)-generic filter G s.t. V. = W[G].
> Let
W :={W : Wis a <x-ground}.
Since there are only set many < x-grounds, W contains a ground by
Theorem 1.3 in [Usuba]. We shall call W defined above the
< k-mantle of V.

» The following theorem generalizes Theorem 1.6 in [Usubal.

Theorem 25. ([S.F. & Usuba]) Suppose that P is any class of p.o.s.
If k is a tightly P-gen. hyperhuge cardinal, then the < k-mantle is
the smallest ground of V (i.e. it is the bedrock of V) and it is also
a < k-ground.

[Usuba] Toshimichi Usuba, The downward directed grounds hypothesis and very
large cardinals, Journal of Mathematical Logic, Vol. 17(2) (2017), 1-24.



Bedrock of tightly P-gen. hyperhuge cardinal (4/6)

Theorem 25. ([S.F. & Usuba]) Suppose that P is any class of p.o.s.
If  is a tightly 7-gen. hyperhuge cardinal, then the < x-mantle is

the smallest ground of V (i.e. it is the bedrock of V) and it is also
a < k-ground.

A very rough sketch of the Proof.

» Analyzing the proof of Theorem 25, we also obtain:

Theorem 26. ([S.F. & Usuba]) Suppose that P is any class of p.o.s.

If k is a tightly P-gen. hyperhuge cardinal, then x is a hyperhuge
cardinal in the bedrock W of V. I

Theorem 27. ([S.F. & Usuba]) Suppose that P is any class of p.o.s.
If & is a tightly super-C(") P-gen. hyperhuge cardinal, then  is a
super-C"-hyperhuge cardinal in the bedrock W of V. Inj

» These Theorems have many strong consequences. Some of them
are ...



Equiconsistency as the Eternal Recurrence

Corollary 28.([S.F. & Usuba]) Suppose that P is the class of all
p.o.s. Then the following theories are equiconsistent:
(a)ZFC 4+ “there is a hyperhuge cardinal”.
(b)ZFC + “there is a tightly P-Laver gen. hyperhuge cardinal”.
(¢ )ZFC + “there is a tightly P-gen. hyperhuge cardinal”.
(d)ZFC + “bedrock W exists and wy is a hyperhuge cardinal in W".

Corollary 29.([S.F. & Usuba] ) Suppose that P is one of the following
classes of p.o.s: all semi-proper p.o.s; all proper p.o.s; all ccc p.o.s;
all o-closed p.o.s. Then the following theories are equiconsistent:

a )ZFC + “there is a hyperhuge cardinal”.
b )ZFC + “there is a tightly P-Laver gen. hyperhuge cardinal”.
¢ )ZFC + “there is a tightly P-gen. hyperhuge cardinal”.

d )ZFC + “bedrock W exists and kq is a hyperhuge cardinal in W'
Iij

o~ o~ o~ o~

Cf.: Theorem 24, and Theorem 27.


Sakae Fuchino
Equiconsistency as the Eternal Recurrence Corollary 28.([S.F. & Usuba]) Suppose that P is the class of all p.o.s. Then the following theories are equiconsistent: ( a )ZFC + “there is a hyperhuge cardinal”. ( b )ZFC + “there is a tightly P-Laver gen. hyperhuge cardinal”. ( c )ZFC + “there is a tightly P-gen. hyperhuge cardinal”. ( d )ZFC + “bedrock W exists and ω1 is a hyperhuge cardinal in W”. Corollary 29.([ S.F. & Usuba ] ) Suppose that P is one of the following classes of p.o.s: all semi-proper p.o.s; all proper p.o.s; all ccc p.o.s; all σ-closed p.o.s. Then the following theories are equiconsistent: ( a )ZFC + “there is a hyperhuge cardinal”. ( b )ZFC + “there is a tightly P-Laver gen. hyperhuge cardinal”. ( c )ZFC + “there is a tightly P-gen. hyperhuge cardinal”. (d)ZFC+“bedrockWexistsandκrefl isahyperhugecardinalinW”. ‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌ ‌ Cf.: Theorem 24 , and Theorem 27 .


Equiconsistency as the Eternal Recurrence (2/2)

Corollary 30.([S.F. & Usuba]) Suppose that P is the class of all
p.o.s. Then the following theories are equiconsistent:

(a)ZFC + “there is a tightly super-C(°®) P-Laver gen. hyperhuge

cardinal”.
(b)ZFC + "bedrock W exists and wy is a super-C(*)-hyperhuge
cardinal in W". I}

Corollary 31.([S.F. & Usuba] ) Suppose that P is one of the following
classes of p.o.s: all semi-proper p.o.s; all proper p.o.s; all ccc p.o.s;
all o-closed p.o.s. Then the following theories are equiconsistent:

(a)ZFC + ‘“there is a tightly super-C(°®) P-Laver gen. hyperhuge
cardinal”.

(b)ZFC + “bedrock W exists and /{teﬂv is a super-C(®)-hyperhuge
cardinal in W". [
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Equiconsistency as the Eternal Recurrence (2/2) Corollary 30.([S.F. & Usuba]) Suppose that P is the class of all p.o.s. Then the following theories are equiconsistent: ( a )ZFC + “there is a tightly super-C(∞) P-Laver gen. hyperhuge cardinal”. ( b )ZFC + “bedrock W exists and ω1V is a super-C (∞)-hyperhuge cardinal in W”. Corollary 31.([ S.F. & Usuba ] ) Suppose that P is one of the following classes of p.o.s: all semi-proper p.o.s; all proper p.o.s; all ccc p.o.s; all σ-closed p.o.s. Then the following theories are equiconsistent: ( a )ZFC + “there is a tightly super-C(∞) P-Laver gen. hyperhuge cardinal”. ( b )ZFC + “bedrock W exists and κrefl V is a super-C (∞)-hyperhuge cardinal in W”.


Toward the Laver-generic Maximum
» The existence of tightly super-C(°) P-Laver gen. superhuge
cardinal for the class P of all semi-proper p.o.s is one of the
strongest principle we considered so far. It implies the tightly
super-C(°°) P-Laver gen. superhuge cardinal is 280 = X, and
MM™ holds (see [I1] or [S.F.1]), the existence of the bedrock
(Theorem 25), and (P, H(X,))-RcA™ ( Theorem 21).

> MM™™ implies many preferable set-theoretic axioms/principles
including Woodin's (*) ([Aspero-Schindler]).

[Aspero-Schindler] David Asper6, and Ralf Schindler, Martin's Maximum+-+
implies Woodin's axiom (*). Annals of Mathematics, 193(3), (2021), 793-835.

> (P, H(X2))-RcA™ claims that any property (even with any subset of
w1 as parameter) forcable by a semi-proper p.o., is a theorem in
some semi-proper ground. E.g. Cichén's Maximum is what happens
in a semi-proper ground.

» Strong forms of Resurrection Axiom are also consequences of the
existence of the super-C(>) (semi-proper)-Laver gen. large cardinal:



Toward the Laver-generic Maximum (2/4)
» Suppose that P is a class of p.o.s and ;° is a definition of a cardinal
(e.g. "Ny, “Ny", “2%o”)
> The following boldface version of the Resurrection Axioms is
considered in [Hamkins-Johnstone]:

[RAZ(H.) : For any A C H(u®) and any PP € P, there is a P-name Q
of p.o.s.t. [Fp“Q € P” and, for any (V,P x Q)-generic H, there
s A° C H(u* )0 st (H(u")Y, A, €) < (H(u*)VI, A%, €).

Theorem 32. [S.F.1] For an iterable class of p.o.s P, if ki is tightly
P-Laver-gen. superhuge, then IRAZ(HM[) holds. &)

[Hamkins-Johnstone] Joel David Hamkins, and Thomas A. Johnstone, Strongly
uplifting cardinals and the boldface resurrection axioms, Archive for Mathematical
Logic Vol 56, (2017), 1115-1133.



Toward the Laver-generic Maximum (3/4)

» With a Lever-genericity corresponding to a larger large cardinal, we
obtain the “tight” version of Unbounded Resurrection Principle in
[Tsaprounis]:

TUR(P) :  For any A > ki, and P € P, there exists a P-name Q

with [Fp“Q € P” s.t., for (V P+ Q)-gen. H, there are \* € On,

and jo € V[H] s.t. jo : H(A)Y Sy ’H(X‘)V[IHI Jo(Keejt) > A, and
PxQis forcing equivalent to a p.o. of size jo(Keeft )-

Theorem 33. [S.F.1] For an iterable class P, if rj is tightly
P-Laver gen. ultrahuge, then TUR(P) holds.

[Tsaprounis] Tsaprounis, On resurrection axioms, The Journal of Symbolic Logic,
Vol.80, No.2, (2015), 587-608.



Toward the Laver-generic Maximum (4/4)
» We can even establish the consistency of:

> 2% s tightly su@r—C(w) (semi-proper)-Laver gen. superhuge +

(all p.o.s, H(R1)")-RecA

A construction of a model: Work in a model V) where & is

super-C(®)-hyperhuge. Then V,. < Vy. Take an inaccessible § < x
with V5 < V). Use this to force (all p.o.s, H(N1))-RcA. & is still
super-C(°)-hyperhuge in the generic extension, so we can use it to

force 2% to be tightly super-C(*®) (semi-proper)-Laver gen

superhuge. (all p.o.s, H(R1)")-RcA survives this forcing.

» Open Problems:

I8)

> Is there any natural axiom which would imply the combination of

the principles above?

> A (possibly) related question: Is there anything similar to HOD

dichotomy for the bedrock under a (tightly generic/tightly

Laver-generic) very large cardinal?

\huge ;’fg D




Recurrence Axioms are monotonic in parameters

» For classes of p.o.s P, P’ and sets A, A’ of parameters,
if PCP and AC A, then we have

(P, A)-RcA = (P,A)-ReA.

» Note that, in general, we do not have similar implication between
MP(P, A) and MP(P’, A").



Proof of Propositions 5,6 and Lemma 7.

Proposition 5. If P contains a p.o. which adds a real, as well as a
p.o. which (preserves X1V but) collapses R,V (e.g. P = proper p.o.s)
then (P, H(Feeji))x,-RcA implies 2% = 5.

Proof. Suppose that P is as above and (P, H (ki ))x,-RcA holds.

> 2%o > Ny Otherwise CH holds. Then P(w)Y € H (k). Hence
“Ix(x CwAx g P(w)V)" is a L1-formula with parameters from
H(keeji) and P € P adding a real forces (the formula in forcing
language corresponding to) this formula.

> By (P, H(keeji))s,-RcA, the formula must hold in a ground. This is
a contradiction.

2N <N I 2%0 > N, then N1V, RpY € H(2R0) C H (ko). Let
P € P be a p.o. which preserves Ry but collapses N,.

>> Letting ¢(x,y) a Xi-formula saying “3f (f is a surjection from x to y)
we have H_IP’“ 1/1((N1V) v s (NQV) v ) 7,

> By (P, H(2%))s,-RcA, the formula (X1, R,Y) must hold in a
ground. This is a contradiction.



Proof of Propositions 5,6 and Lemma 7. (2/3)

Proposition 6. If P contains a p.o. which preserves X1 but collapses
Xy, and also a p.o. which collapses ®;Y (e.g. P = all p.o.s)
then (P, H(2%0))s,-RcA implies 2% = Ny

Proof. We have 2% < X5, by the second half of the proof of Proposition 5.

b If 2% = Ry then RV e H(2%).

> Let P € P be a p.o. collapsing RV, le. IFp“ N;Y is countable”.
Since “- - - is countable” is X1, there is a ground M s.t.
M =4 is countable”. This is a contradiction. (Proposition 6)



Proof of Propositions 5,6 and Lemma 7. (3/3)

Lemma 7. (1) Suppose that (P, H(X2))x,-RcA holds. Then all ele-
ments of P are Ny-preserving and stationary preserving.

(2) Assume (P, A)s,-RcA. If P contains a p.o. adding a real, then
P(w) € A. If P contains a p.o. collapsing k > w then k & A.

Proof. (1): Suppose otherwise and P € P is s.t.
IFe N;Y is countable”. Note that w,¥; € H(Keeft)-

» By (P, ’H(/{te%))zl—RcA, it follows that there is a ground W of V
s.t. W =“N;" is countable”. This is a contradiction.

» Suppose that P € P destroy the stationarity of S C w;. Note that
w1, S € H(N2). Let ¢ = (Y, z) be the X1-formula

dx (y is a club subset of the ordinal y and z N x = ).

Then we have |-p“@(w1,S)”. By (P, H(keeji))s,-RCA, it follows
that there is a ground W C V s.it. S € W and W = (w1, S). This
is a contradiction.

(2): By the first part of the proof of Proposition 5, and the proof of
Proposition 6. (0] (Lemma 7)



Proof of Theorem 12.

Theorem 12. ([S.F.& Gappo& Parente]) If & is tightly P-Laver-gen.
ultrahuge for an iterable class P. Then (P, H(x))r-RcA™ holds.

Proof. We prove the case [ = ¥>. p-Lg-RCA-0 in ...-revisited.pds

Lemma 12a. If « is a limit ordinal and V,, satisfies a large enough
fragment of ZFC, then for any P € V,, and (V,P)-generic G, we
have V,[G] = v, VIE]. I}

» Assume that x is tightly P-Laver gen. ultrahuge for an iterable class
P of p.o.s. > Suppose that ¢ = p(x) is Xo-formula (in L;),
* The general case of a I-formula is proved similarly. a € H(k), and P € P is s.t.

(@) VE IFev(a)”.
» Let A >k best. PeV, and
(0) Vi =5V for a sufficiently large n.

In particular, we may assume that we have chosen the n above so
that a sufficiently large fragment of ZFC holds in V) in the sense of
Lemma 12a.



Proof of Theorem 12. (2/3)
Let Q be a P-name s.t. [Fp“Q € P”, and for (V, P« Q)-generic H

there are j, M C V[H] with

()J'V_MMr

(2) i(k) >
()P*QPH iyl € M, and
)

(4) [P+Q| < j(x).
By (4), we may assume that the underlying set of P+ Q is j(x) and

PxQ e Vi
Let G := HNP. Note that G € M by (3) and we have
V[H]) satisfies a sufficiently large fragment of ZFC

Since Vi)' (= iy
by elementarity of j, and hence the equality follows by Lemma 12a

PN
(5) Viy" = Viy't™ = Vi [
—~—

3)
choice (0) of A, and by the definability of grounds, we

by
Thus, by( ),
have Vj()\) € M and Vj()\)v[G] e M.



Proof of Theorem 12. (3/3)
Claim 12b. Vj(,)V[G] k= ¢(a).

- By Lemma 12a, \,V[G] = \,VI®] and \/j(,\)V[G] = \/j(A)V[G] by (5).
By (0), both V,V[G] and \/j\(//\) [G] satisfy large enough fragment of
ZFC. Thus
(6) V\V[G] =5, Vi IGl.

By (a) and (0) we have V,V[G] = ¢(a). By (6) and since ¢ is ¥,

it follows that \/j(A)V[G] E o(a). —| (Claim 12b.)
Thus we have

(7) M [=“there is a P-ground N of Vjyy s.t. N |= p(a)”.

By the elementarity (1), it follows that

(6) V [=“there is a P-ground N of V) s.t. N = ¢(a)”.

Now by (0), it follows that there is a P-ground W of V s.t.

W = gp(a). (0] (Theorem 12)[]
 back J



A very rough sketch of the Proof of Theorem 14.

Theorem 14. ([S.F. & Usuba]) Suppose that P is any class of p.o.s.
If k is a tightly P-gen. hyperhuge cardinal, then the < k-mantle is
the smallest ground of V (i.e. it is the bedrock of V) and it is also
a < k-ground.

A rough sketch of the Proof.

» Suppose that  is tightly 7P-gen. hyperhuge and let W be the < x-mantle.

» By Theorem 1.3 in [Usuba], it is enough to show that, for any ground
W C W is actually a < k-ground and hence W = W holds.

» Let W C W be a ground. Let y be the cardinality (in the sense of V) of a
p.o. S € W s.t. there is a (W, S)-generic F s.t. V = W[F]. W.l.o.g., i > k.

» By Laver-Woodin Theorem, there is r € V s.t. W = (-, r)V for an
L.-formula ¢.

> Let 0 > 1 bes.t. r € Vp, and for a sufficiently large natural number n, we

have V;Y <5, V. By the choice of 6, ®(-, r)Vev =0, nNVNnVvyY =wn v,

=V, Let Q € P s.t. for (V,Q)-generic H, there are j, M C V[H] with
J V5 M, 0 < j(k), |Q <j(k), Vi)™ € M, and

H, j"j(0) € M.

... (back and forth with j) ... Thus VoW € V", Since 0 can be arbitrary
large, It follows that W C W. I}



Proof of Theorem 11.

» Suppose that P € Piss.t. |Fp“BFA-4(P)” and G is a
(V, P)-generic set. Let ¢ = ¢(x) be a Xp-formula in L., and
©(x) = Iy Y(x,y) for a My-formula ¥ in L.. Let u < k and
a€ H(pu") (S H(k)). We have to show that H(uT)Y = p(a) <
H((u")\VENVE = o(a).

» Suppose first that H(uT)V |= ¢(a). Let b€ H(ut)V be s.t.
H((p")V)V = ¢(a, b). Since we have V = BFA_ .(P) by
Ikegami-Trang Theorem 10, it follows that
H((pH)VIEH)VIC] = y(a, b) by Bagaria's Absoluteness Theorem 2,
and thus H((ut)VIEHVIE! £ o(a).

Suppose now H((ut)VICHVICl = (a). By (P, H(k))s,ur-RcAT,
there is a P-ground W of V s.t.

* W ESBFAL . (P) A H(u) E (a)"
Note that the formula in (*)is X, if n >3 and I if n = 2.



Proof of Theorem 11. (2/2)

Let b € H((uT)W)W be s.t. W =“H(ut) = ¥(a, b)”. By
Bagaria's Absoluteness Theorem 2, and since V is a P-generic
extension of W, it follows that V =“H(u™) = ¢(a, b)” and hence
H(ph)Y = o(a).

» For the last statement of the present theorem, let ¢ be a
Yo-formula, and a € H(k). If H(k) = ¢(a), then, by Lemma Al
below, there is u < r s.t. H(p") = ¢(a). By the first part of the
theorem, it follows that H((uT)VICHVICl = p(a). Thus
H((sH)VIEHVICT = 4(a) by Lemma Al
If H((k(D)VIEHVIE] = ©(a), then there is 1 < & s.t.
H((uH)VIEHVIC] = 4(a) (this is also shown using Lemma Al).
Hence H((11)V) |= ¢(a) by the first part of the theorem.

[0 (Theorem 11)

Lemma A1l. (Levy) H(x) <x, V for any cardinal k > Ro. I5)
[ back J



Proof of Proposition 3

Proposition 3. Suppose that P is an iterable class of p.o.s and A a
set (of parameters). (P, A)-RcAT is equivalent to MP(P, A).

Proof. » Suppose that (P, A)-RcA™ holds. We show that MP(P, A) holds.
Let P € P be a push of the P-button ¢(a).

> Let ¢'(X) be the formula saying  (*) VQ(QeP — |Fo“e(X)”.
> Then we have |Fp“¢/(3)”. By (P, A)-RcA™, there is a P-ground W of V
st. a€ W and W = ¢/(@) holds.
> By the definition (*) of ¢/, it follows that V |= (3) holds.
» Now suppose that MP(P, A) holds, and P € P is s.t. |Fp“p(a)” for a € A.
> Let ¢” be a formula saying:
(**) “there is a P-ground N s.t. X € N and N = ¢(x)”. 1]
Then ¢"(3) is a P-button and P is its push.
By MP(P, A), ©"(3) holds in V and hence there is a P-ground W of V
s.t.3€ W and W |= ¢(3). This shows (P, A)-RcA™. () (Proposition 3)

191 This is formalizable in the language of ZFC by Laver-Woodin Theorem. See: [ back ]

[9a] Jonas Reitz, The Ground Axiom, JSL, Vol.72, No.4 (2007), 1299-1317.

[9b] Joan Bagaria, Joel David Hamkins, Konstantinos Tsaprounis, Toshimichi Usuba, Superstrong and other
large cardinals are never Laver indestructible, AML, Vol.55 (2016), 19-35.




Proof of Theorem 15.
Proof. Suppose that |Fp“H(ut) E ¢(3)” for P € P with
lFp“BFAL x(P)”, 1 < K, Lo-formula ¢ and for a € H(u™).
» Let G be a (V,P)-generic set. Then we have
(1) VI[G] E“BFA<«(P) A H(1T) = »(a)"
> Let ¢ = JyY(X,y) where ¢ is a M;-formula in L..
Let b € H((pT)VIEHVICL be s.t. H((pT)VIEHYVIE] = (3, b).
> Since r is tightly 7-Laver-gen. huge, there is a P-name Q with
Fp“Qe P s.t, for (V,PxQ)-generic H with
(2) G C H (under the identification P < P+ Q),
there are j, M C V[H] s.t. j : V i>,ﬂ M,
(3) IP*xQ| < (k) (by tightness),
(4) P, ]P’*@, H e M and
(5) j"j(k) € M.
By (1), (2) and Bagaria's Absoluteness Theorem 2 (applied to V[G]),
we have V[H] =% (3, b)” and hence V[H] =“H(u") = (3, b)".




Proof of Theorem 15. (2/2)

» By (3), (4) and (5), there is a P-name of b in M. By (4), it follows
that b € M. By similar argument, we have H((p)VIENVIEH C v
and hence H((p )V = #((u+t)M)M € M. Thus we have
M = H(ut) = 0(3, b’

» By elementarity, it follows that V =“H(u™) = Jy(3,y)”, and
hence V = H(u™) = ¢(3)” as desired.

> Suppose now that P, y, ¢, a are as above and assume that
V E“H(u") = ¢(3)” holds. For Mi-formula ¢ as above let
beH(uT)V best. VEH(u') = (3, b)".
Since V = BFA_ (P) by assumption, it follows that
V[G] = #(a, b) by Bagaria's Absoluteness Theorem 2, and hence
V[G] - (3).
The last assertion of the theorem follows by the same argument as
that given at the end of the proof of Theorem 11. [ (Theorem 15.)
[ back J



Additional slide 2: Identity crisis (or a resolution thereof)
» | am working on the following conjecture (suggested by G. Goldberg):

Proposition. A model with a/the tightly PP-Laver generically ultrahuge cardinal
can be obtained starting from a model with an extendible cardinal.

Conjecture. A model with a/the tightly super-C(*) P-Laver generically ul-
trahuge cardinal can be obtained starting from a model with a super-C(*)
extendible cardinal, and this cardinal has relatively low consistency strength.

0=1 (tightly) super-C(™) P-Laver-gen. hyperhuge
TT—— -1 \(consistencywise)
T 2-huge —, super C'(")-hyperhuge

N S o
superhuge «—— ultrahuge «—— hyperhuge

(consistencywise)

—
" super almost-huge
.

almost huge (tightly) P-Laver-gen. hyperhuge

huge

/

Vopénka’s Principle (tightly) (super-C())-P-Laver-gen. hyperhuge

cardinal is equiconsistent with the
. corresponding variation of hyperhuge cardinal
extendible [S.F.-Usubal

superstrong ~
\ Woodin

:

T supercompact —, strongly compact
The equiconsistency

(consistencywise)

(tightly) P-Laver-gen. ultrahuge — (tightly) P-Laver-gen. superhuge — - - -


Sakae Fuchino
(tightly) (super-C(∞))-𝓟-Laver-gen. hyperhuge cardinal is equiconsistent with the corresponding variation of hyperhuge cardinal [S.F.-Usuba]

Sakae Fuchino
ultrahuge

Sakae Fuchino
extendible

Sakae Fuchino
(tightly) P-Laver-gen. ultrahuge


Additional slide 1: Identity crisis (or a resolution thereof)

» For many combination of P, A, and I the exact consistency
strength of MP(P, A)r is known: they are usually quite low and
compatible with V = L.

> For example for P = ccc p.o.s, proper p.o.s, or semi-proper p.o.s,
MP(P, H(2%0)) is known to be compatible with V = L.

> An exception is when P = stationary preserving p.o.s. The known
lower bound of MP(P,(2%0)) implies e.g. much nore than 07
exists.

» On the other hand,

Theroem 34. MM*T (or even MM™* with class many, stationarily
many etc. supercompact cardinals) does not imply any of MP(P, ()
for any non-trivial P. i}

Proof. MM** (with class many supercompact cardinals) is compatible with GA
(Ground Axiom) while MP(,@) for any non-trivial 2 implies = GA. o S


Sakae Fuchino
Theroem 34. MM++ (or even MM++ with class many, stationarily many etc. supercompact cardinals) does not imply any of MP(P, ∅) for any non-trivial P.

Sakae Fuchino
Proof. MM⁺⁺ (with class many supercompact cardinals) is compatible with GA (Ground Axiom) while MP(𝓟,Ø) for any non-trivial 𝓟 implies ¬ GA. □


