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Viale's Absoluteness Theorem Generic Absoluteness Revisted (4/21)
» We discuss “generalizations” of the following theorem (see GIEIEINED E5D).

Theorem 1. (M.Viale, Theorem 1.4 in [1]) Assume that MM holds,
and there are class many Woodin cardinals. Then, for any station-
ary preserving p.o. P with |Fp“BMM?”, we have

H(R2)Y <5, H(Ng)V[G] for (V,P)-generic G. @

» MM™T is the double plus version of Martin's Maximum.

[ For any stationary preserving P, any family D of dense subsets of P with
| D| < Xz, and set S of P-names of stationary subsets of wi with | S| < Ra,

there is a D-generic filter G over P s.t. S[G] C ws is stationary for all S € S. ]

> BMM stands for Bounded Martin's Maximum.

[ For any stationary preserving P, family D of dense subsets of P with
|D| < N5 s.t. each D € D is generated by D’ C D with | D’ | < Ry,

there is a D-generic filter G over P. |

[l Matteo Viale, Martin's maximum revisited, Archive of Mathematical Logic,
Vol.55, (2016), 295-316.



Bagaria's Absoluteness Theorem Generic Absoluteness Revsted (5/21)
Notation: For an ordinal o, let o) :=sup({| 8|7 : 8 < a}).
Note that o{*) = o if v is a cardinal. Otherwise, we have o/t) = | a|".

» Viale's Theorem 1. is based on Bagaria's Absoluteness Theorem.

Theorem 2. (Bagaria's Absoluteness Theorem, Theorem 5 in [?)
For an uncountable cardinal x and a class P of p.o.s closed under
forcing equivalence, and restriction, the following are equivalent:

(a) BFA-L(P).
(b) Forany Pe P, Xi-formula ¢ in L. and a € H(k), |Fp“p(a)” & ¢(a).
(c) Forany P e P and (V,P)-generic G, H(x)V <5, H((x))VIE)VIE]

» BFA_ .(P) is the Bounded Forcing Axiom for P.

[ For any P € P and any family of D dense subsets of P with | D |< k, and
s.t. each D € D is generated by some D’ C D with |D'| < &, ... |

] Joan Bagaria, Bounded forcing axioms as principles of generic absoluteness,
Archive of Mathematical Logic, Vol.39, (2000), 393-401.
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» Recurrence Axiom for a class P of p.o.s and a set A ([S.F. & Usuba])
is the axiom scheme expressing:

(P, A)-RcA : For any L.-formula ¢ = ¢(X) and 3 € A,
if |Fp“@(a)” fora P € P, _then
there is a ground W of the universe V s.t. 3 € W and W = ¢(3).

*  An inner model W of V is called a ground if there is a p.o. P € W and
(W, P)-generic G s.t. V = W[G].



Recurrence Axiom (2/2) Generc Absoluteess Revited (7/21)

» The following is a natural strengthening of the Recurrence Axiom

([S.F. & Usuba]):

(P, A)-RcAT : For any L.-formula ¢ = ¢(x) and any 3 € A,
if |Fp“@(3)” for a P € P, _then
there is a P-ground W of the universe V s.t. 3 € W and W | ¢(3).

* An inner model W of V is called a P-ground if there is a p.o. P € W with
W =“P € P”, and (W, P)-generic G s.t. V = W[G].



Recurrence Axiom™T = Maximality Principle Generic Absoluteness Revisted (8/21)

» A non-empty class P of p.o.s is iterable if it satisfies: © {1} € P,
(@ P is closed w.r.t. forcing equivalence (i.e. if P € P and P ~ P’
then P’ € P), @ closed w.r.t. restriction, and 3 for any P € P
and P-name Q, |-p“Q € P” implies P+ Q € P.

* For an iterable P, an L.-formula ¢(3) with parameters 3 (€ V) is said to

be a P-button if there is P € P s.t. for any P-name Q of p.o. with
H_PLL @ c 7)77’ we have ”—P*Q «@ @(5) ”

* If ©(3) is a P-button then we call P as above a push of the button ¢(3).

» The Maximality Principle MP(P, A) for an iterable P is the
assertion expressed as an axiom scheme in £. (Hamkins [¥):

MP(P,A): For any L.-formula ¢(X) and a € A, if (3) is a P-button
then ¢(3) holds.

31 Joel Hamkins, A simple maximality principle, The Journal of Symbolic
Logic, Vol.68, no.7, (2003), 527-550.



Recurrence Axiom'l' = Maximality Principle (2/2) Generic Absoluteness Revisited (9/21)
Proposition 3. Suppose that P is an iterable class of p.o.s and A a

set (of parameters). (P, A)-RcAt is equivalent to MP(P, A).
Inner Model Hypothesis (IMH) (Sy-D. Friedman) If a property ¢

holds in an inner model of an outer model, then there is an inner
model of the universe which also satisfies the property ¢.

Proposition 4. For a class P of p.o.s with {1} € P and a set A (of
parameters), (P, A)-RcAT is equivalent to the ZFC version of IMH :

For any L.-formula ¢ = ¢(X) and any @ € A, if a P € P forces “there
is a ground M with 3 € M satisfying ¢(a)", then there is a P-ground W
of Vst.aeWand W = ¢(3). 5]

» These equivalences in Propositions 3, 4 are also mentioned in 4.

[l Neil Barton, Andrés Eduardo Caicedo, Gunter Fuchs, Joel David Hamkins,
Jonas Reitz, and Ralf Schindler, Inner-Model Reflection Principles, Studia
Logica, Vol.108, (2020),573-595.
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» For a family I' of formulas (in £.), we consider the following restricted
version of Recurrence Axiom:

(P,A)r—RcA+ : For any I -formula ¢ = ¢(X) and 3 € A, _if_
IFp“ @(a)” for a P € P, _then
there is a P-ground W of the universe Vs.t.a € Wand W = ¢(3).

> Let Koefl 1= max{Ng, 2N°}.

Keefi is a cardinal which appears as the reflection point (cardinal &
s.t. ref[ectlon down to < k holds) in many natural reflection principles.

Also we have Krefi = the tightly P-Laver-gen. large cardinal for many
natural settings of P and “large cardinal” if the generic large cardinal exists

Proposition 5. ([S.F. & Usuba]) If P contains a p.o. which adds
a real, as well as a p.o. which (preserves NV but) collapses N,V
(e.g. P = proper p.o.s), then (P, H (ki ))x,-RcA implies 280 = Ry

Proposition 6. ([S.F. & Usuba]) If P contains a p.o. which preserves
R;Y but collapses Ny, and also a p.o. which collapses ®;V (e.g.
P = all p.o.s), then (P, H(2%0))s,-RcA implies 280 = N;.
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Proposition 5. ([S.F. & Usuba]) If P contains a p.o. which adds
a real, as well as a p.o. which (preserves N but) collapses R,V
(e.g. P = proper p.o.s), then (P, H (ki ))x,-RcA implies 280 — N,

Proposition 6. ([S.F. & Usuba]) If P contains a p.o. which preserves
N1V but collapses N5, and also a p.o. which collapses R;" (e.g.
P = all p.o.s), then (P, H(2%°))s,-RcA implies 2% = ;.

» In Proposition 5, | put “preserves X1V but” in parentheses because
of the following Lemma 7, (1):

Lemma 7. ([S.F. & Usuba]) (1) Suppose that (P, H(X2))s,-RcA
holds. Then all elements of P are stat. preserving.

(2) Assume (P, A)s,-RcA. If P contains a p.o. adding a real, then
P(w) & A. If P contains a p.o. collapsing k > w then k & A.

> Lemma 7, (2) shows that H (k) and H(2"0) in Recurrence Axioms

in Lemmas 5,6 are maximal possible.
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Proposition 8. Suppose that all P € P preserve cardinals, and P
contains p.o.s adding at least k many reals for each x € Card
(This is the case e.g. if P = ccc p.o.s). Then

(a) (P,0)s,-RcAT implies that 2%° is very large.

(b) (P, H(2%0))s,-RcAT implies that 2% is a limit cardinal.
Thus, if 2% is regular in addition, then 2% is weakly inaccessible.

(c) If there is a weakly inaccessible cardinal above 2%°, then
(P, H(2%°))s,-RcAT implies that 2%¢ is a limit of inaccessible cardinals.

Proof. (a): To prove e.g. that 2% > R, let P € P be s.t.

[Fp“2% > R, ”. Then by (P,0)s,-RcA™, there is a P-ground W of V

s.t. W = 2% > X,,. Since V is P-gen. extension of W and P preserves
cardinals, it follows that V |= 2% > X

(b): Suppose p < 2% Then u € H(2%). Thereis P € P s.t.

[Fp“2% > ut”. By (P,H(2%))s,-RcAT, it follows that there is a
P-ground W of V which satisfies this statement. Since P preserves

cardinals it follows that V = 2% > p*.  (c): ... (Proposition 8)



Consistency strength of Maximality Principles (= Recurrence Axioms'l') Generi AbsolutenessRevsted (13/21)

» Maximality Principles and hence also Recurrence Axioms have
relatively low consistency strength.

Theorem 9. (Hamkins Bl Aspers 1¥1) The following theories are
equiconsistent to each other and they are also equiconsistent with
ZFC + there are stationarily many inaccessibles:

ZFC + MP(all p.o.s, H(2%)), ZFC + MP(c.c.c p.o.s, H(2%0)),
ZFC + MP(proper p.o.s, H(2%°)),
ZFC + MP(semi-proper p.o.s, H(2%°)). @

» Caution!! The exact consistency strength of ZFC + MP(stationary

preserving p.o.s, H(2%°)) is not known and its lower bound is much
higher than the consistency strength in Theorem 9.

B3 Joel Hamkins, A simple maximality principle, The Journal of Symbolic
Logic Vol.68, no.7, (2003), 527-550.

11 David Aspers, A Maximal Bounded Forcing, The Journal of Symbolic
Logic, Vol.67, No.1 (2002), 130-142.
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» The following Ikegami-Trang Absoluteness Theorem extends
Theorem 10. (lkegami, and Trang [?1) For an iterable class P of

p.o.s, and a cardinal k the following are equivalent:
(a) (P, H(x))5s-ReAT.  (b) (P, H(x))y-ReA. (c) BFAL(P). (@

> Theorem 10 together with Proposition 5 implies
BFAL .., (Proper p.o.s) — 2% =Ry,

Theorem 11. ([S.F.& Gappo& Parente]|) Suppose that P is an
iterable ¥ ,-definable class of p.o.s for n > 2 and (P, H(k))s,ur-RcA™
holds for an uncountable cardinal x where I is a set of formulas
which are conjunction of a ¥,-formula and a [y-formula.

> Then, for any P € P s.t. |Fp“ BFA<.(P)”, we have
H(pt) <5, H(uH)VIE for all 4 < & and for (V,P)-generic G.

> Thus, we have H(x)V <x, H((x(H))VICI)VIE]

[l Dajsuke lkegami and Nam Trang, On a class of maximality principles, Archive
for Mathematical Logic, Vol. 57, (2018), 713-725.
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» For an iterable class P of p.o.s, a cardinal & is said to be (tightly)
P-Laver-generically ultrahuge, if
for any A >« and P € P there is a P-name Q with |Fp“Q € P”, s.t. for
(V, P+ Q)-generic H, there are j, M C V[H] s.t. j : V S M, j(K) > A,
P, H, (Vi)Y € M and [P+ Q| < j(x) (more precisely: IPx Q is forcing
equivalent to a p.o. of size <j(k)).

Theorem 12. ([S.F. & Gappo & Parente]) If & is tightly P-Laver-gen.
ultrahuge for an iterable class P. Then (P, H(k))r-RcAT holds.

* [ = conjunctions of ¥» and [, formulas. »On the other hand:

Theorem 13. ([S.F.1]) Tightly P-Laver-gen. ultrahugeness does not
imply MP(P, 0) (under the assumption of a large cardinal slightly
more than the ultrahuge). I5)

> The proof of Theorem 13 can be modified to show the non-implication of
(P,0)n,-RcA from a generic large cardinal for many instances of P.

“I'" in Theorem 12 for such P is almost optimal.
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» The following is a corollary of Theorem 11 (and Theorem 12 for (2)) :

Corollary 14. (1) Suppose that (P, H(x))-RcAt holds for an iter-
able P. Then, for for any P € P s.t. |p“ BFAL(P)”, we have
H(ut)Y <5, H(uH)VIE for all p < & and for (V,P)-generic G.
Thus, H(k)Y <5, H((xHHVIE]L

(2) Suppose that  is tightly P-Laver-gen. ultrahuge for an iterable and
Y »-definable P. Then, for for any P € P s.t. |Fp“BFAL(P)”, we
have H(ut)Y <5, H(uH)VIE! for all u < & and for (V,P)-generic G.
Thus, H(k)Y <5, H((xHHVIE]L i)

» By a direct proof, we can improve (2) of the Corollary 14:

Theorem 15.([S.F. & Gappo & Parente] ) For an iterable class P of
p.o.s, suppose that BFA. . (P) holds, and & is tightly P-Laver-gen.
huge. Then, for any P € P s.t. |Fp“BFA_.(P)”, we have
H(pt)Y <5, H(ut)VIE forall 4 < & and for (V,P)-generic G.
Thus, H(x)V <5, H((xH))VIEHVIC]
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Theorem 15.([S.F. & Gappo & Parente] ) For an iterable class P of
p.o.s, suppose that BFA. . (P) holds, and & is tightly P-Laver-gen.
huge. Then, for any P € P s.t. |Fp“BFA-.(P)”, we have
H(pt)Y <5, H(ut)VIE forall 4 < & and for (V,P)-generic G.
Thus, H(x)V <5, H((xH))VIEHVIC]

» BFA_ .(P) in the assumption of Theorem 15 is absorbed in the
Laver-genericity part of the assumption if we assume the Lever-genericity
for a slightly (?) stronger notion of large cardinal:

Theorem 16. ("1, see also [S.F.& Gappo & Parente]) (1) Sup-
pose that x is P-Laver-gen. supercompact. Then FA. ,(P) holds.

(2) If all elements of the class P of p.o.s are stationary preserving
and r is P-Laver-gen. supercompact, then FAZS "(P) holds. [
1S F., A. Ottenbreit Maschio Rodrigues, and H. Sakai, Strong

Léwenheim-Skolem theorems for stationary logics, Il — reflection down to the
continuum, Archive for Mathematical Logic, Volume 60, issue 3-4, (2021),

495-523.
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» The Ground Axiom (GA) asserts that there is no proper ground of

the universe V.
Theorem 17. MM™ " + "there are class many supercompact cardinals”

is consistent with GA.

Proof. MM™ is preserved by < ws-directed closed forcing (Larson,

Cox [81, Theorem 4.7). Starting from a model with cofinally many

supercompact cardinals, use the first supercompact to force MM™*. Then

the class forcing just like that in the proof of Laver's indestructibility

theorem will produce a desired model. (Theorem 17)

Corollary 18. (cf. [S.F.& Gappo& Parente]) The conclusion of Viale's Theorem :
H(R,)Y <5, H(R2)VIC]  for all stationary preserving PP
and (V,P)-generic G
is consistent with GA.
Proof. By Viale’s Absoluteness Theorem and Theorem 17.

[d (Corollary 18)
(81 Sean D. Cox, Forcing axioms, approachability, and stationary set reflection,
The Journal of Symbolic Logic Volume 86, Number 2, June 2021, 499-530.




Ground Axiom and generic absoluteness (2/2) Generc Absoluteness Revste (19/21)

Theorem 17. MM™T + “there are class many supercompact cardinals”

is consistent with GA.
Lemma 19. GA + b > Ry implies = (ccc, 0)5x,-RcA and = (ccc, O)n,-
RcA.
Proof. Assume that GA + MA + —CH holds. Let P be a p.o. adding N;
Cohen reals then we have |Fp“b = N;”. If (ccc,P)s,-RcA™ holds then,
since b = Wy is X, there is a ground satisfying this equation. The ground

must be different from V since V |= b > Ry. This is a contradiction.

» For - (ccc, ®)n,-RcAt, argue similarly e.g. using the fact that b < 0 is M.
(Lemma 19)

Corollary 20.([S.F.& Gappo& Parente]) MM™* + “there are class
many supercompact cardinals” does not imply the existence of a
tightly P-Laver gen. ultrahuge cardinal for any class P of p.o.s
containing p.o. for adding X; many Cohen reals.

Proof. Work in ZFC + MM™" + “there are class many supercompact cardinals”

+ GA (Theorem 17). By Lemma 19 and Theorem 12, this theory proves
that there is no tightly P-Laver-gen. ultrahuge cardinal. (Corollary 20)



Some (presumably relatively easiy) open problems  Geeic Assohteness Revsted (20/21)

» |s the conclusion of Theorems 11 and 15 consistent with GA for P
other than “stationary preserving” and with the continuum other

than Ny ?

» Does (tightly) P-Laver-gen. supercompactness already imply —=GA 7
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Tightly super-C(>) P-Laver-gen. ultrahuge cardinal
The following strengthening of tightly 7-Laver-gen. ultrahugeness of
r (which is formulated in an axiom scheme) implies MP(P, H(k)).

For a natural number n, we call a cardinal x super-C(")-hyperhuge

if for any Ao > & there are A > \g with V), <y V,and j, M CV
st.j:V S M, j(k) >\ SOMC M and Vi <5, V.

# is super-C("M-ultrahuge if the condition above holds with

“IMM C M replaced by “J"IM C M and V) € M".

If 1 is super-C("M-hyperhuge then it is super-C("-ultrahuge.

We shall also say that x is super-C(°)-hyperhuge
(super-C(>)_ultrahuge, resp.) if it is super C("-hyperhuge
(super-C("-ultrahuge, resp.) for all natural number n.

A similar kind of strengthening of the notions of large cardinals which

we call here “super-C("" appears also in Boney [Boney]. It is called
“C(M+" and is considered there in connection with extendibility.

[Boney] Will Boney, Model Theoretic Characterizations of Large Cardinals, Israel

Journal of Mathematics, 236, (2020), 133-181.



Tightly super-C(®) P-Laver-gen. ultrahuge cardinal (2/6)

» For a natural number n and an iterable class P of p.o.s, a cardinal «
is super-C(") P-Laver-generically ultrahuge (super-C(") P-Laver-gen.
ultrahuge, for short) if, for any A\g > x and for any P € P, there are
a A > Ao with V), <y, V, a P-name @ with H—]p“ @ € P”, and J,

M CV[H] st. j: VS5, M, j(k) >\, P, H, Vi)Vl € M and
Vioy VI <5, VIH].

> A super-C(") P-Laver-generically ultrahuge cardinal & is tightly
super-C(") P-Laver-generically ultrahuge (tightly super-C(")
P-Laver-gen. ultrahuge, for short), if [P+ Q| < j(x).

» Super-C(°®) P-Laver-gen. ultrahugeness and tightly super-C(°®) P-Laver
gen. ultrahugeness are defined similarly to super-C(>) ultrahugeness.

%)

» Note that, in general, super-C(°) hyperhugeness and super-C!

ultrahugeness are notions unformalizable in the language of ZFC
without introducing a new constant symbol for  since we need

infinitely many £.-formulas to formulate them.

> Exceptions are ...



Tightly super-C(™) P-Laver-gen. ultrahuge cardinal (3/6)

> Exceptions are when we are talking about a cardinal in a set model
being with one of these properties, or when we are talking about a
cardinal definable in V having these properties in an inner model. In
the latter case, the situation is formalizable with infinitely may
L.-sentences.

» In contrast, the super-C(°°) P-Laver gen. ultrahugeness of « is
expressible in infinitely many L.-sentences. This is because a
P-Laver gen. large cardinal  for relevant classes P of p.o.s is
uniquely determined as rj or 2% (see e.g. [1I] or [S.F.]).

Theorem 21. ([S.F. & Usuba]) Suppose that P is an iterable class
of p.o.s and & is tightly super-C(°°) P-Laver-gen. ultrahuge. Then
(P, H(r))-RcAt (i.e. MP(P,H(x)) ) holds.

Proof. Similarly to Theorem 12. [

Corollary 21a. “there is a tightly super-C> (stationary preserving p.o.s)
-Laver-gen. hyperhuge cardinal” is strictly stronger than MM™ " [



Tightly super-C(*) P-Laver-gen. ultrahuge cardinal (4/6)
» Consistency of tightly super-C(>°) P-Laver-gen. ultrahuge cardinal
for reasonable P follows from 2-huge.

Lemma 22. ([S.F. & Usuba]) Suppose that & is 2-huge with the
2-huge elementary embedding j, that is, j : V . M CV, for
some M C V and /*(\)M C M. Then
Vi) E“ ki is super-C(®)_hyperhuge cardinal”, and for each n € w,
V() =" there are stationarily many super-C(M-hyperhuge cardinals’.

I}

Theorem 23. ([S.F. & Usuba]) Suppose that p is an inaccessible
cardinal and & is super-C(®)-hyperhuge in Vy,. Then there is a
Laver function f : kK — V,, for super-C(®)-hyperhugeness in V.. &



Tightly super-C(*) P-Laver-gen. ultrahuge cardinal (5/6)

Theorem 24. ([S.F. & Usuba]) (1) Suppose that pu is inaccessible
and k < p is super-C(®)-ultrahuge in V. Let P = Col(Xy, ).
Then, in V,[G], for any V,,,P-generic G, N;/“[G] (= k) is tightly
super-C(®°) g-closed-Laver-gen. ultrahuge and CH holds.

(2) Suppose that y is inaccessible and & < i is super-C(*)-ultrahuge
with a Laver function f : k — V,, for super-C(®)-ultrahugeness
in V,,. If Pis the CS-iteration of length x for forcing PFA along
with f, then, in V,[G] for any (V,,P)-generic G, N;/“[G] (= k)
is tightly super-C(>) proper-Laver-gen. ultrahuge and 2% = R,
holds.

(2) Suppose that y is inaccessible and & < p is super-C(*)-ultrahuge
with a Laver function f : & — V., for super-C(®)-ultrahugeness in
V.. If P is the RCS-iteration of length & for forcing MM along with
f, then, in V,,[G] for any (V,,, P)-generic G, N;/“[G] (= k) is tightly
super-C(®) semi-proper-Laver-gen. ultrahuge and 2% = R, holds.



Tightly super-C() P-Laver-gen. ultrahuge cardinal (6/6)

(3) Suppose that p is inaccessible and & is super-C(®)-ultrahuge with a
Laver function f : k — V, for super-C(>)-ultrahugeness in V. If
P is a FS-iteration of length x for forcing MA along with £, then, in
V,.[G] for any (V,,,P)-generic G, 2% (= k) is tightly super-C(*°)
c.c.c.-Laver-gen. ultrahuge, and & is very large in V,,[G].

(4) Suppose that p is inaccessible and « is super-C(®)_ultrahuge with
a Laver function f : k — V,, for super-C(®)-ultrahugeness in V..
If P is a FS-iteration of length x along with £ enumerating “all”
p.o.s, then, in V,[G] for any (V,,,P)-generic G, 2% (= Xy) is
tightly super-C(®) all p.o.s-Laver-gen. ultrahuge, and CH holds.

1)



Bedrock of tightly P-gen. hyperhuge cardinal
» Recall that a cardinal x is hyperhuge, if for every A\ > k, there is
jiVS.MCVst A < j(r) and JAM C M. A hyperhuge
cardinal x can be characterized in terms of existence of k-complete
normal ultrafilters with certain additional properties (e.g. see [S.F.

& Usuba]).

» For a class P of p.o.s, a cardinal « is tightly P-generic hyperhuge
(tightly P-gen. hyperhuge, for short) if for any A\ > &, there is
Q € P s.t. for a (V, Q)-generic H, there are j, M C V[H] s.t.

Ji V5. M, X< j(k), |Q] <j(k), and j"j(A),H € M.
» For a class P of p.o.s, a cardinal « is tightly P-Laver-generically

hyperhuge (tightly P-Laver-gen. hyperhuge, for short) if for any
A >k, and PP € P there is a P-name Q with [Fp“Q € P” s.t. for a

(V, P % Q)-generic H, there are j, M C V[H] s.t. j: V =5, M,

~

A < (), [P*Q] < j(x), and j"j(\),H € M.



Bedrock of tightly P-gen. hyperhuge cardinal (2/6)
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Bedrock of tightly P-gen. hyperhuge cardinal (3/6)
» For a cardinal k, a ground W of the universe V is called a
< k-ground if there is a p.o. P € W of cardinality <k (in the sense
of V) and (W, P)-generic filter G s.t. V. = W[G].
> Let
W :={W : Wis a <x-ground}.
Since there are only set many < x-grounds, W contains a ground by
Theorem 1.3 in [Usuba]. We shall call W defined above the
< k-mantle of V.

» The following theorem generalizes Theorem 1.6 in [Usubal.

Theorem 25. ([S.F. & Usuba]) Suppose that P is any class of p.o.s.
If k is a tightly P-gen. hyperhuge cardinal, then the < k-mantle is
the smallest ground of V (i.e. it is the bedrock of V) and it is also
a < k-ground.

[Usuba] Toshimichi Usuba, The downward directed grounds hypothesis and very
large cardinals, Journal of Mathematical Logic, Vol. 17(2) (2017), 1-24.



Bedrock of tightly P-gen. hyperhuge cardinal (4/6)

Theorem 25. ([S.F. & Usuba]) Suppose that P is any class of p.o.s.
If k is a tightly 7P-gen. hyperhuge cardinal, then the < x-mantle is

the smallest ground of V (i.e. it is the bedrock of V) and it is also
a < k-ground.

A very rough sketch of the Proof.

» Analyzing the proof of Theorem 25, we also obtain:

Theorem 26. ([S.F. & Usuba]) Suppose that P is any class of p.o.s.

If k is a tightly P-gen. hyperhuge cardinal, then x is a hyperhuge
cardinal in the bedrock W of V. I

Theorem 27. ([S.F. & Usuba]) Suppose that P is any class of p.o.s.
If & is a tightly super-C(") P-gen. hyperhuge cardinal, then  is a
super-C"-hyperhuge cardinal in the bedrock W of V. Inj

» These Theorems have many strong consequences. Some of them
are ...



Equiconsistency as the Eternal Recurrence

Corollary 28.([S.F. & Usuba]) Suppose that P is the class of all
p.o.s. Then the following theories are equiconsistent:
(a)ZFC 4+ “there is a hyperhuge cardinal”.
(b)ZFC + “there is a tightly P-Laver gen. hyperhuge cardinal”.
(¢ )ZFC + “there is a tightly P-gen. hyperhuge cardinal”.
(d)ZFC + “bedrock W exists and wy is a hyperhuge cardinal in W".

Corollary 29.([S.F. & Usuba] ) Suppose that P is one of the following
classes of p.o.s: all semi-proper p.o.s; all proper p.o.s; all ccc p.o.s;
all o-closed p.o.s. Then the following theories are equiconsistent:

a )ZFC + “there is a hyperhuge cardinal”.
b )ZFC + “there is a tightly P-Laver gen. hyperhuge cardinal”.
¢ )ZFC + “there is a tightly P-gen. hyperhuge cardinal”.

d )ZFC + “bedrock W exists and kq is a hyperhuge cardinal in W'
Inj

o~ o~ o~ o~

Cf.: Theorem 24, and Theorem 27.



Equiconsistency as the Eternal Recurrence (2/2)

Corollary 30.([S.F. & Usuba]) Suppose that P is the class of all
p.o.s. Then the following theories are equiconsistent:

(a)ZFC + “there is a tightly super-C(°®) P-Laver gen. hyperhuge

cardinal”.
(b)ZFC + "bedrock W exists and wy is a super-C(*)-hyperhuge
cardinal in W". [T

Corollary 31.([S.F. & Usuba]) Suppose that P is one of the following
classes of p.o.s: all semi-proper p.o.s; all proper p.o.s; all ccc p.o.s;
all o-closed p.o.s. Then the following theories are equiconsistent:

(a)ZFC + ‘“there is a tightly super-C(°®) P-Laver gen. hyperhuge
cardinal”.

(b)ZFC + “bedrock W exists and /{teﬂv is a super-C(°°)-hyperhuge
cardinal in W". Isj



Toward the Laver-generic Maximum
» The existence of tightly super-C(°) P-Laver gen. superhuge
cardinal for the class P of all semi-proper p.o.s is one of the
strongest principle we considered so far. It implies the tightly
super-C(*°) P-Laver gen. superhuge cardinal is 2% = X, and
MM™ holds (see [11] or [S.F.1]), the existence of the bedrock
(Theorem 25), and (P, H(X,))-RcA™ ( Theorem 21).

> MM™™ implies many preferable set-theoretic axioms/principles
including Woodin's (*) ([Aspero-Schindler]).

[Aspero-Schindler] David Asperé, and Ralf Schindler, Martin's Maximum+-+
implies Woodin's axiom (*). Annals of Mathematics, 193(3), (2021), 793-835.

> (P, H(X2))-RcA™ claims that any property (even with any subset of
w1 as parameter) forcable by a semi-proper p.o., is a theorem in
some semi-proper ground. E.g. Cichén's Maximum is what happens
in a semi-proper ground.

» Strong forms of Resurrection Axiom are also consequences of the
existence of the super-C(>) (semi-proper)-Laver gen. large cardinal:



Toward the Laver-generic Maximum (2/4)
» Suppose that P is a class of p.o.s and u° is a definition of a cardinal
(e.g. "Ny, “Ny", “2%o”)
> The following boldface version of the Resurrection Axioms is
considered in [Hamkins-Johnstone]:

[RAZ(H.) : For any A C H(u®) and any PP € P, there is a P-name Q
of p.o.s.t. [Fp“Q € P” and, for any (V,P x Q)-generic H, there
is A* C H(p*)VIH st. (H(u*)Y, A €) < (H(p*)VH, A €).

Theorem 32. [S.F.1] For an iterable class of p.o.s P, if ki is tightly
P-Laver-gen. superhuge, then [RAZ(HM[) holds. &)

[Hamkins-Johnstone]| Joel David Hamkins, and Thomas A. Johnstone, Strongly
uplifting cardinals and the boldface resurrection axioms, Archive for Mathematical
Logic Vol 56, (2017), 1115-1133.



Toward the Laver-generic Maximum (3/4)

» With a Lever-genericity corresponding to a larger large cardinal, we
obtain the “tight” version of Unbounded Resurrection Principle in
[Tsaprounis]:

TUR(P) :  For any A > ki, and P € P, there exists a P-name Q

with [Fp“Q € P” s.t., for (V P+ Q)-gen. H, there are \* € On,

and jo € V[H] s.t. jo : H(A)Y Sy ’H(X‘)V[IHI Jo(Keet) > A, and
PxQis forcing equivalent to a p.o. of size jo(Keeft )-

Theorem 33.  [S.F.1] For an iterable class P, if .y is tightly
P-Laver gen. ultrahuge, then TUR(P) holds.

[Tsaprounis] Tsaprounis, On resurrection axioms, The Journal of Symbolic Logic,
Vol.80, No.2, (2015), 587-608.



Toward the Laver-generic Maximum (4/4)
» We can even establish the consistency of:

> 2% s tightly su@r—C(w) (semi-proper)-Laver gen. superhuge +

(all p.o.s, H(R1)")-ReA

A construction of a model: Work in a model V) where & is

super-C(®)-hyperhuge. Then V,. < Vy. Take an inaccessible § < «
with V5 < V). Use this to force (all p.o.s, H(N1))-RcA. & is still
super- C(°)-hyperhuge in the generic extension, so we can use it to

force 2% to be tightly super-C(*®) (semi-proper)-Laver gen

superhuge. (all p.o.s, H(R1)")-RcA survives this forcing.

» Open Problems:

I8)

> Is there any natural axiom which would imply the combination of

the principles above?

> A (possibly) related question: Is there anything similar to HOD

dichotomy for the bedrock under a (tightly generic/tightly

Laver-generic) very large cardinal?

\huge ;’fg D




Recurrence Axioms are monotonic in parameters

» For classes of p.o.s P, P’ and sets A, A’ of parameters,
if PC P and AC A, then we have

(P, A)-RcA = (P,A)-ReA.

» Note that, in general, we do not have similar implication between
MP(P, A) and MP(P’, A").



Proof of Propositions 5,6 and Lemma 7.

Proposition 5. If P contains a p.o. which adds a real, as well as a
p.o. which (preserves X1V but) collapses R,V (e.g. P = proper p.o.s)
then (P, H(Feeji))x,-RcA implies 2% = 5.

Proof. Suppose that P is as above and (P, H (ki ))x,-RcA holds.

> 2%o > Ny Otherwise CH holds. Then P(w)Y € H (k). Hence
“Ix(x CwAx g P(w)V)" is a L1-formula with parameters from
H(keeji) and P € P adding a real forces (the formula in forcing
language corresponding to) this formula.

> By (P, H(keeji))s,-RcA, the formula must hold in a ground. This is
a contradiction.

2N <N If 280 > N, then N1V, RV € H(280) € H (ko). Let
P € P be a p.o. which preserves Ry but collapses N,.

> Letting ¢(x,y) a Xi-formula saying “3f (f is a surjection from x to y)
we have H_IP’“ 1/1((N1V) v s (NQV) v ) 7,

> By (P, H(2%))s,-RcA, the formula 1)(R;",R,Y) must hold in a
ground. This is a contradiction.



Proof of Propositions 5,6 and Lemma 7. (2/3)

Proposition 6. If P contains a p.o. which preserves X1V but collapses
Xy, and also a p.o. which collapses ®;Y (e.g. P = all p.o.s)
then (P, H(2%0))s,-RcA implies 2% = Ny

Proof. We have 2% < X5, by the second half of the proof of Proposition 5.

b If 2% = Ry then RV e H(2%).

> Let P € P be a p.o. collapsing RV, le. IFp“ N;V is countable”.
Since “- - - is countable” is X1, there is a ground M s.t.
M =4 is countable”. This is a contradiction. (Proposition 6)



Proof of Propositions 5,6 and Lemma 7. (3/3)

Lemma 7. (1) Suppose that (P, H(X2))x,-RcA holds. Then all ele-
ments of P are Nj-preserving and stationary preserving.

(2) Assume (P, A)s,-RcA. If P contains a p.o. adding a real, then
P(w) € A. If P contains a p.o. collapsing k > w then k & A.

Proof. (1): Suppose otherwise and P € P is s.t.
IFe N;Y is countable”. Note that w,¥; € H(Keeft )-

» By (P, ’H(/{te%))zl—RcA, it follows that there is a ground W of V
s.t. W =“N;" is countable”. This is a contradiction.

» Suppose that P € P destroy the stationarity of S C w;. Note that
w1, S € H(N2). Let ¢ = (Y, z) be the X1-formula

dx (y is a club subset of the ordinal y and z N x = 0).

Then we have |-p“@(w1,S)”. By (P, H(keej))x,-ReA, it follows
that there is a ground W C Vs.it. S € W and W = (w1, S). This
is a contradiction.

(2): By the first part of the proof of Proposition 5, and the proof of
Proposition 6. (0] (Lemma 7)



Proof of Theorem 12.

Theorem 12. ([S.F.& Gappo & Parente]) If & is tightly P-Laver-gen.
ultrahuge for an iterable class P. Then (P, H(x))r-RcA™ holds.

Proof. We prove the case [ = ¥». p-Lg-RCA-0 in ...-revisited.pds

Lemma 12a. If « is a limit ordinal and V,, satisfies a large enough
fragment of ZFC, then for any P € V,, and (V,P)-generic G, we
have V,[G] = v, VI6]. I}

» Assume that x is tightly P-Laver gen. ultrahuge for an iterable class
P of p.o.s. > Suppose that ¢ = p(x) is Xo-formula (in L;),
* The general case of a I-formula is proved similarly. a € H(k), and P € P is s.t.

(@) VE IFe“e(a)”.
» Let A >k best. PeV, and
(0) Vi =5V for a sufficiently large n.

In particular, we may assume that we have chosen the n above so
that a sufficiently large fragment of ZFC holds in V) in the sense of
Lemma 12a.



Proof of Theorem 12. (2/3)
Let Q be a P-name s.t. [Fp“Q € P”, and for (V, P« Q)-generic H

there are j, M C V[H] with

()J'V_MMr

(2) i(k) >
()P*QPH ViVl € M, and
)

(4) [P+Q| < j(x).
By (4), we may assume that the underlying set of P+ Q is j(x) and

PxQ e Vi
Let G := HNP. Note that G € M by (3) and we have
V[H]) satisfies a sufficiently large fragment of ZFC

Since Vi) (= iy
by elementarity of j, and hence the equality follows by Lemma 12a

PN
(5) Viy" = Viy'™ = Vi [
—~—

3)
choice (0) of A, and by the definability of grounds, we

by
Thus, by( ),
have Vj()\) € M and Vj()\)v[G] e M.



Proof of Theorem 12. (3/3)
Claim 12b. Vj(,)V[G] k= ¢(a).

- By Lemma 12a, \,V[G] = V4 VI®] and \/j(,\)V[G] = \/j(A)V[G] by (5).
By (0), both V,V[G] and \/j\(//\) [G] satisfy large enough fragment of
ZFC. Thus
(6) V\V[G] =5, Vi IGl.

By (a) and (0) we have V,V[G] = ¢(a). By (6) and since ¢ is ¥,

it follows that \/j(A)V[G] E o(a). —| (Claim 12b.)
Thus we have

(7) M [=“there is a P-ground N of Vj(yy s.t. N |= p(a)”.

By the elementarity (1), it follows that

(6) V [=“there is a P-ground N of V) s.t. N = ¢(a)”.

Now by (0), it follows that there is a P-ground W of V s.t.

W = gp(a). (0] (Theorem 12)[]
 back J



A very rough sketch of the Proof of Theorem 14.

Theorem 14. ([S.F. & Usuba]) Suppose that P is any class of p.o.s.
If k is a tightly P-gen. hyperhuge cardinal, then the < k-mantle is
the smallest ground of V (i.e. it is the bedrock of V) and it is also
a < k-ground.

A rough sketch of the Proof.

» Suppose that  is tightly 7P-gen. hyperhuge and let W be the < x-mantle.

» By Theorem 1.3 in [Usuba], it is enough to show that, for any ground
W C W is actually a < k-ground and hence W = W holds.

» Let W C W be a ground. Let y be the cardinality (in the sense of V) of a
p.o. S € W s.t. there is a (W, S)-generic F s.t. V = W[F]. W.l.o.g., i > k.

» By Laver-Woodin Theorem, there is r € V s.t. W = (-, r)V for an
L.-formula ¢.

> Let 0 > 1 bes.t. r € Vy, and for a sufficiently large natural number n, we

have V;¥ <5, V. By the choice of 6, ®(-, r)Vev =0, nNVNnVvyY =wn v

=V, Let Q € P s.t. for (V,Q)-generic H, there are j, M C V[H] with
J V5 M, 0 < j(k), |Q <j(k), Vi)™ € M, and

H, j"j(0) € M.

... (back and forth with j) ... Thus VoW € V", Since 0 can be arbitrary
large, It follows that W C W. I}



Proof of Theorem 11.

» Suppose that P € Piss.t. |Fp“BFA-4(P)” and G is a
(V,P)-generic set. Let ¢ = ¢(x) be a Xp-formula in L., and
©(x) = Jy Y(x,y) for a My-formula ¥ in L.. Let u < k and
a€ H(u") (€ H(k)). We have to show that H(u™)V = p(a) <
H((pH)VENVE | o(a).

» Suppose first that H(uT)V |= ¢(a). Let b€ H(ut)V be s.t.
H((p")V)V = 9(a, b). Since we have V = BFA_ .(P) by
Ikegami-Trang Theorem 10, it follows that
H((pH)VIEH)VIC] = y(a, b) by Bagaria's Absoluteness Theorem 2,
and thus H((ut)VIEHVIE! £ o(a).

Suppose now H((ut)VICHVICl = (a). By (P, H(k))s,ur-RcAT,
there is a P-ground W of V s.t.

* W ESBFAL . (P) A H(u) E (a)"
Note that the formula in (*)is X, if n >3 and I if n = 2.



Proof of Theorem 11. (2/2)

Let b€ H((uT)W)W be s.t. W =“H(ut) = ¥(a, b)”. By
Bagaria's Absoluteness Theorem 2, and since V is a P-generic
extension of W, it follows that V =“H(u™) = ¢(a, b)” and hence
H(ph)Y = o(a).

» For the last statement of the present theorem, let ¢ be a
Yo-formula, and a € H(k). If H(k) = ¢(a), then, by Lemma Al
below, there is u < r s.t. H(u") = ¢(a). By the first part of the
theorem, it follows that H((uT)VICHVICl = p(a). Thus
H((sH)VIEHVICT = 4(a) by Lemma Al
If H((k(D)VIEHVIE] = ©(a), then there is 1 < & s.t.
H((uH)VIEHVIC] = o(a) (this is also shown using Lemma Al).
Hence H((111)V) = ¢(a) by the first part of the theorem.

[0 (Theorem 11)

Lemma A1l. (Levy) H(x) <x, V for any cardinal kK > Ro. I5)
[ back ]



Proof of Proposition 3

Proposition 3. Suppose that P is an iterable class of p.o.s and A a
set (of parameters). (P, A)-RcAT is equivalent to MP(P, A).

Proof. » Suppose that (P, A)-RcA™ holds. We show that MP(P, A) holds.
Let P € P be a push of the P-button ¢(a).

> Let ¢'(X) be the formula saying  (*) VQ(QeP — |Fo“e(X)”.
> Then we have |Fp“¢/(3)”. By (P, A)-RcA™, there is a P-ground W of V
s.t. a€ W and W = ¢/(@) holds.
> By the definition (*) of ¢/, it follows that V |= (3) holds.
» Now suppose that MP(P, A) holds, and P € P is s.t. |Fp“p(a)” for a € A.
> Let ¢” be a formula saying:
(**) “there is a P-ground N s.t. X € N and N = ¢(x)”. 1]
Then ¢"(3) is a P-button and P is its push.
By MP(P, A), ©"(3) holds in V and hence there is a P-ground W of V
s.t.3€ W and W |= ¢(3). This shows (P, A)-RcA™. () (Proposition 3)

191 This is formalizable in the language of ZFC by Laver-Woodin Theorem. See:

[9a] Jonas Reitz, The Ground Axiom, JSL, Vol.72, No.4 (2007), 1299-1317.

[9b] Joan Bagaria, Joel David Hamkins, Konstantinos Tsaprounis, Toshimichi Usuba, Superstrong and other
large cardinals are never Laver indestructible, AML, Vol.55 (2016), 19-35.




Proof of Theorem 15.
Proof. Suppose that |Fp“H(ut) E ¢(3)” for P € P with
lFp“BFAL x(P)”, 1 < K, p-formula ¢ and for a3 € H(u™).
» Let G be a (V,P)-generic set. Then we have
(1) VI[G] E“BFA<«(P) A H(1T) = »(a)"
> Let ¢ = JyY(X,y) where ¢ is a M;-formula in L..
Let b € H((pT)VIEHVICL be s.t. H((pT)VIEHYVIE] = (3, b).
» Since r is tightly 7-Laver-gen. huge, there is a P-name Q with
Fp“Qe P s.t., for (V,PxQ)-generic H with
(2) G C H (under the identification P < P+ Q),
there are j, M C V[H] s.t. j : V i>,ﬂ M,
(3) IPxQ| < (k) (by tightness),
(4) P, ]P’*@, H e M and
(5) j"j(k) € M.
By (1), (2) and Bagaria's Absoluteness Theorem 2 (applied to V[G]),
we have V[H] =% (3, b)” and hence V[H] =“H(u") = (3, b)".




Proof of Theorem 15. (2/2)

» By (3), (4) and (5), there is a P-name of b in M. By (4), it follows
that b € M. By similar argument, we have H((p)VIENVIEH C v
and hence H((uT )V = #((u+t)M)M € M. Thus we have
M =5 H(ut) = 03, b

» By elementarity, it follows that V =“H(u™) = Jy(3,y)”, and
hence V = H(u™) = ¢(3)” as desired.

> Suppose now that P, y, ¢, a are as above and assume that
V E“H(u") = ¢(3)” holds. For Mi-formula ¢ as above let
beH(uT)V best. VEH(u') = (3, b)".
Since V = BFA_ .(P) by assumption, it follows that
V[G] = #(a, b) by Bagaria's Absoluteness Theorem 2, and hence
V[G] - (3).
The last assertion of the theorem follows by the same argument as
that given at the end of the proof of Theorem 11. [ (Theorem 15.)
[ back J



Additional slide 2: Identity crisis (or a resolution thereof)
» | am working on the following conjecture (suggested by G. Goldberg):

Proposition. A model with a/the tightly P-Laver generically extendible cardinal
can be obtained starting from a model with an extendible cardinal.

Conjecture. A model with a/the tightly super-C(>) P-Laver generically ul-
trahuge cardinal can be obtained starting from a model with a super-C(*)
extendible cardinal, and this cardinal has relatively low consistency strength.
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Additional slide 1: Identity crisis (or a resolution thereof)

» For many combination of P, A, and I the exact consistency
strength of MP(P, A)r is known: they are usually quite low and
compatible with V = L.

> For example for P = ccc p.o.s, proper p.o.s, or semi-proper p.o.s,
MP(P, H(2%0)) is known to be compatible with V = L.

> An exception is when P = stationary preserving p.o.s. The known
lower bound of MP(P,(2%°)) implies e.g. much nore than 07
exists.

» On the other hand,

Theroem 34. MM*" (or even MM with class many, stationarily
many etc. supercompact cardinals) does not imply any of MP(P, ()
for any non-trivial P. I



