Generic Absoluteness Revisited

A joint work with Takehiko Gappo (合浦 岳彦) and フランチェスコ・パレンテ (Francesco Parente) Sakaé Fuchino (渕野 昌) Kobe University, Japan https://fuchino.ddo.jp/index.html

(2025 年 1 月 3 日 (13:16 JST) printer version)

2024 年 10 月 9 日 (11:25~12:05 JST), RIMS Set Theory Workshop 2024, Kyoto* 2024 年 11 月 15 日 (14:00~17:00 JST), Seminar with Yo Matsubara and Francesco Parente, Kobe[†] 2024 年 11 月 27 日 (15:30~17:0 JST), Kobe Set Theory Seminar[†]

The following slides are typeset using upleTEX with beamer class, and presented on GoodReader v.5.19.1202^{*} (Skim vesion $1.7.6^{\dagger}$)

The most up-to-date version of these slides is downloadable as https://fuchino.ddo.jp/slides/RIMS2024-set-theory-fuchino-pf.pdf

The research is supported by Kakenhi Grant-in-Aid for Scientific Research (C) 20K03717

・ロト ・ 戸 ・ ・ ヨ ト ・ ヨ ・ ・ つ へ ()

References

- S.F., A. Ottenbreit Maschio Rodrigues, and H. Sakai, Strong downward Löwenheim-Skolem theorems for stationary logics, II
 reflection down to the continuum, Archive for Mathematical Logic, Vol.60, 3-4, (2021), 495–523. https://fuchino.ddo.jp/papers/SDLS-II-x.pdf
- [S.F.1] S.F., Maximality Principles and Resurrection Axioms under a Laver generic large cardinal, (note for "Maximality Principles and Resurrection Axioms in light of a Laver generic large cardinal", in preparation) https://fuchino.ddo.jp/papers/RIMS2022-RA-MP-x.pdf
- [S.F. & Usuba] S.F., and T. Usuba, On Recurrence Axioms, preprint. https://fuchino.ddo.jp/papers/recurrence-axioms-x.pdf
- [S.F.2] S.F., Reflection and Recurrence, to appear in the Festschrift on the occasion of the 75. birthday of Professor Janos Makowsky, Birkhäuser, (2024). https://fuchino.ddo.jp/papers/reflection_and_recurrence-Janos-Festschrift-x.pdf
- [S.F. & Gappo & Parente] S.F., T. Gappo, and F. Parente, Generic Absoluteness revisited, preprint. https://fuchino.ddo.jp/papers/generic-absoluteness-revisited-x.pdf

Outline

\triangleright References \triangleright Outline

- Viale's Absoluteness Theorem
- Bagaria's Absoluteness Theorem
- ▷ Recurrence Axioms
- \triangleright Recurrence Axiom⁺ = Maximality Principle
- Solution(s) of Continuum Problem under Recurrence Axiom
- ▷ Consistency strength of Maximality Principles (= Recurrence Axioms⁺)
- ▷ Generic absoluteness under restricted Recurrence Axioms
- \triangleright Tightly \mathcal{P} -Laver-gen. ultrahuge cardinal
- \triangleright Generic absoluteness under \mathcal{P} -Laver-gen. large cardinals
- ▷ Ground Axiom and generic absoluteness
- ▷ Tightly super C^(∞)-P-Laver-gen. ultrahuge cardinal
 ▷ Bedrock of tightly
 P-gen. hyperhuge cardinal
 ▷ Equiconsistency as the Eternal Recurrence
 ▷ Toward the Laver-generic Maximum

Viale's Absoluteness Theorem

► We discuss "generalizations" of the following theorem (see Theorem 11 15).
Theorem 1. (M.Viale, Theorem 1.4 in ^[1]) Assume that MM⁺⁺ holds,

and there are class many Woodin cardinals. Then, for any stationary preserving p.o. \mathbb{P} with $\models_{\mathbb{P}}$ "BMM", we have $\mathcal{H}(\aleph_2)^{V} \prec_{\Sigma_2} \mathcal{H}(\aleph_2)^{V[\mathbb{G}]}$ for (V, \mathbb{P}) -generic \mathbb{G} .

MM⁺⁺ is the double plus version of Martin's Maximum.
 [[For any stationary preserving ℙ, any family D of dense subsets of ℙ with |D| < ℵ₂, and set S of ℙ-names of stationary subsets of ω₁ with |S| < ℵ₂, there is a D-generic filter G over ℙ s.t. S[G] ⊆ ω₁ is stationary for all S ∈ S.]]

▷ BMM stands for Bounded Martin's Maximum.

[[For any stationary preserving \mathbb{P} , family \mathcal{D} of dense subsets of \mathbb{P} with $|\mathcal{D}| < \aleph_2$ s.t. each $D \in \mathcal{D}$ is generated by $D' \subseteq D$ with $|D'| < \aleph_2$, there is a \mathcal{D} -generic filter \mathbb{G} over \mathbb{P} .]]

^[1] Matteo Viale, Martin's maximum revisited, Archive of Mathematical Logic, Vol.55, (2016), 295–316.

Irt

Bagaria's Absoluteness Theorem Generic Absoluteness Revisited (5/21) **Notation:** For an ordinal α , let $\alpha^{(+)} := \sup(\{|\beta|^+ : \beta < \alpha\})$. Note that $\alpha^{(+)} = \alpha$ if α is a cardinal. Otherwise, we have $\alpha^{(+)} = |\alpha|^+$.

- ▶ Viale's Theorem 1. is based on Bagaria's Absoluteness Theorem.
- **Theorem 2.** (Bagaria's Absoluteness Theorem, Theorem 5 in ^[2]) For an uncountable cardinal κ and a class \mathcal{P} of p.o.s closed under forcing equivalence, and restriction, the following are equivalent:
 - (a) $\mathsf{BFA}_{<\kappa}(\mathcal{P}).$
 - (b) For any $\mathbb{P} \in \mathcal{P}$, Σ_1 -formula φ in $\mathcal{L}_{\varepsilon}$ and $a \in \mathcal{H}(\kappa)$, $\Vdash_{\mathbb{P}} ``\varphi(a)" \Leftrightarrow \varphi(a)$.
 - (c) For any $\mathbb{P} \in \mathcal{P}$ and (V, \mathbb{P}) -generic \mathbb{G} , $\mathcal{H}(\kappa)^{V} \prec_{\Sigma_{1}} \mathcal{H}((\kappa^{(+)})^{V[\mathbb{G}]})^{V[\mathbb{G}]}$.
- BFA_{<κ}(*P*) is the Bounded Forcing Axiom for *P*.
 [[For any P ∈ *P* and any family of *D* dense subsets of P with |*D*|<κ, and s.t. each *D* ∈ *D* is generated by some *D*' ⊆ *D* with |*D*'| < κ, ...]]

・ロト ・ 日 ・ モ ト ・ モ ・ うへつ

^[2] Joan Bagaria, Bounded forcing axioms as principles of generic absoluteness, Archive of Mathematical Logic, Vol.39, (2000), 393-401.

Recurrence Axioms

- ▶ Recurrence Axiom for a class P of p.o.s and a set A ([S.F. & Usuba]) is the axiom scheme expressing:
- (\mathcal{P}, A) -RcA : For any $\mathcal{L}_{\varepsilon}$ -formula $\varphi = \varphi(\overline{x})$ and $\overline{a} \in A$, <u>if</u> $\Vdash_{\mathbb{P}} " \varphi(\overline{a}) "$ for a $\mathbb{P} \in \mathcal{P}$, <u>then</u> there is a ground W of the universe V s.t. $\overline{a} \in W$ and $W \models \varphi(\overline{a})$.
- * An inner model W of V is called a ground if there is a p.o. $\mathbb{P} \in W$ and (W, \mathbb{P}) -generic \mathbb{G} s.t. $V = W[\mathbb{G}]$.

Recurrence Axiom (2/2)

- The following is a natural strengthening of the Recurrence Axiom ([S.F. & Usuba]):
- (\mathcal{P}, A) -RcA⁺ : For any $\mathcal{L}_{\varepsilon}$ -formula $\varphi = \varphi(\overline{x})$ and any $\overline{a} \in A$, <u>if</u> $\Vdash_{\mathbb{P}} " \varphi(\overline{a}) "$ for a $\mathbb{P} \in \mathcal{P}$, <u>then</u> there is a \mathcal{P} -ground W of the universe V s.t. $\overline{a} \in W$ and $W \models \varphi(\overline{a})$.
- * An inner model W of V is called a \mathcal{P} -ground if there is a p.o. $\mathbb{P} \in W$ with $W \models \mathbb{P} \in \mathcal{P}$, and (W, \mathbb{P}) -generic \mathbb{G} s.t. $V = W[\mathbb{G}]$.

Recurrence $Axiom^+ = Maximality Principle$

- A non-empty class P of p.o.s is iterable if it satisfies: ① {1} ∈ P,
 ① P is closed w.r.t. forcing equivalence (i.e. if P ∈ P and P ~ P' then P' ∈ P), ② closed w.r.t. restriction, and ③ for any P ∈ P and P-name Q, ⊩_P"Q ∈ P" implies P * Q ∈ P.
- * For an iterable P, an L_ε-formula φ(ā) with parameters ā (∈ V) is said to be a P-button if there is P ∈ P s.t. for any P-name Q of p.o. with ||_P"Q ∈ P", we have ||_{P*Q}"φ(ā)".
- * If $\varphi(\overline{a})$ is a \mathcal{P} -button then we call \mathbb{P} as above a push of the button $\varphi(\overline{a})$.
- ► The Maximality Principle MP(P, A) for an iterable P is the assertion expressed as an axiom scheme in L_ε (Hamkins ^[3]):

 $\begin{array}{ll} \mathsf{MP}(\mathcal{P}, A) &: \quad \text{For any } \mathcal{L}_{\varepsilon} \text{-formula } \varphi(\overline{x}) \text{ and } \overline{a} \in A, \text{ if } \varphi(\overline{a}) \text{ is a } \mathcal{P} \text{-button} \\ \text{ then } \varphi(\overline{a}) \text{ holds.} \end{array}$

^[3] Joel Hamkins, A simple maximality principle, The Journal of Symbolic Logic, Vol.68, no.7, (2003), 527–550.

Recurrence $Axiom^+ = Maximality Principle (2/2)$

Proposition 3. Suppose that \mathcal{P} is an iterable class of p.o.s and A a set (of parameters). (\mathcal{P}, A) -RcA⁺ is equivalent to MP (\mathcal{P}, A) .

Proof.

Identity crisis

Generic Absoluteness Revisited (9/21)

- **Inner Model Hypothesis (IMH)** (Sy-D. Friedman) If a property φ holds in an inner model of an outer model, then there is an inner model of the universe which also satisfies the property φ .
- **Proposition 4.** For a class \mathcal{P} of p.o.s with $\{1\} \in \mathcal{P}$ and a set A (of parameters), (\mathcal{P}, A) -RcA⁺ is equivalent to the ZFC version of IMH: For any $\mathcal{L}_{\varepsilon}$ -formula $\varphi = \varphi(\overline{x})$ and any $\overline{a} \in A$, if a $\mathbb{P} \in \mathcal{P}$ forces "there is a ground M with $\overline{a} \in M$ satisfying $\varphi(\overline{a})$ ", then there is a \mathcal{P} -ground W of V s.t. $\overline{a} \in W$ and $W \models \varphi(\overline{a})$.

▶ These equivalences in Propositions 3, 4 are also mentioned in ^[4].

Solution(s) of Continuum Problem under Recurrence Axiom Generic Absoluteness Revisited (10/21)

For a family Γ of formulas (in L_ε), we consider the following restricted version of Recurrence Axiom:

 $(\mathcal{P}, A)_{\Gamma}$ -RcA⁺ : For any Γ -formula $\varphi = \varphi(\overline{x})$ and $\overline{a} \in A$, <u>if</u> $\Vdash_{\mathbb{P}} \varphi(\overline{a})$ for a $\mathbb{P} \in \mathcal{P}$, <u>then</u> there is a \mathcal{P} -ground W of the universe V s.t. $\overline{a} \in W$ and $W \models \varphi(\overline{a})$.

▷ Let κ_{tefl} := max{N₂, 2^{N₀}}.
 * κ_{τefl} is a cardinal which appears as the reflection point (cardinal κ s.t. reflection down to < κ holds) in many natural reflection principles.
 Also we have κ_{τefl} = the tightly *P*-Laver-gen. large cardinal for many natural settings of *P* and "large cardinal" if the generic large cardinal exists

Proposition 5. ([S.F. & Usuba]) If \mathcal{P} contains a p.o. which adds a real, as well as a p.o. which (preserves \aleph_1^{\vee} but) collapses \aleph_2^{\vee} (e.g. $\mathcal{P} =$ proper p.o.s), then $(\mathcal{P}, \mathcal{H}(\kappa_{\mathfrak{refl}}))_{\Sigma_1}$ -RcA implies $2^{\aleph_0} = \aleph_2$.

 $\begin{array}{l} \mbox{Proposition 6. ([S.F. \& Usuba]) lf \mathcal{P} contains a p.o. which preserves} \\ \aleph_1^{\,\, V} \mbox{ but collapses } \aleph_2, \mbox{ and also a p.o. which collapses } \aleph_1^{\,\, V} \mbox{ (e.g. } \\ \mathcal{P} = \mbox{ all p.o.s}), \mbox{ then } (\mathcal{P}, \mathcal{H}(2^{\aleph_0}))_{\Sigma_1} \mbox{-} \mbox{RcA implies } 2^{\aleph_0} = \aleph_1. \end{array}$

Solution(s) of Continuum Problem under Recurrence Axiom (2/3)Generic Absoluteness Revisited (11/21) **Proposition 5.** ([S.F. & Usuba]) If \mathcal{P} contains a p.o. which adds a real, as well as a p.o. which (preserves \aleph_1^{\vee} but) collapses \aleph_2^{\vee} (e.g. $\mathcal{P} = \text{proper p.o.s}$), then $(\mathcal{P}, \mathcal{H}(\kappa_{\text{teff}}))_{\Sigma_1}$ -RcA implies $2^{\aleph_0} = \aleph_2$.

 $\begin{array}{l} \mbox{Proposition 6. ([S.F. \& Usuba]) lf \mathcal{P} contains a p.o. which preserves} \\ \aleph_1^V \mbox{ but collapses } \aleph_2, \mbox{ and also a p.o. which collapses } \aleph_1^V \mbox{ (e.g. } \\ \mathcal{P} = \mbox{ all p.o.s), } \underline{\mbox{ then }} (\mathcal{P}, \mathcal{H}(2^{\aleph_0}))_{\Sigma_1} \mbox{-} RcA \mbox{ implies } 2^{\aleph_0} = \aleph_1. \end{array}$

- ► In Proposition 5, I put "preserves ℵ₁^V but" in parentheses because of the following Lemma 7, (1):
- **Lemma 7.** ([S.F. & Usuba]) (1) Suppose that $(\mathcal{P}, \mathcal{H}(\aleph_2))_{\Sigma_1}$ -RcA holds. Then all elements of \mathcal{P} are stat. preserving.
- (2) Assume $(\mathcal{P}, A)_{\Sigma_1}$ -RcA. If \mathcal{P} contains a p.o. adding a real, then $\mathcal{P}(\omega) \notin A$. If \mathcal{P} contains a p.o. collapsing $\kappa > \omega$ then $\kappa \notin A$.
- $\vdash \text{ Lemma 7, (2) shows that } \mathcal{H}(\kappa_{\mathfrak{tefl}}) \text{ and } \mathcal{H}(2^{\aleph_0}) \text{ in Recurrence Axioms}$ in Lemmas 5,6 are maximal possible. Proof of Propositions 5,6 & Lemma 7.

・ロト ・ 日 ・ モ ト ・ モ ・ うへつ

Solution(s) of Continuum Problem under Recurrence Axiom (3/3) Generic Absoluteness Revisited (12/21)

- **Proposition 8.** Suppose that all $\mathbb{P} \in \mathcal{P}$ preserve cardinals, and \mathcal{P} contains p.o.s adding at least κ many reals for each $\kappa \in Card$ (This is the case e.g. if $\mathcal{P} = ccc p.o.s$). Then
- (a) $(\mathcal{P}, \emptyset)_{\Sigma_2}$ -RcA⁺ implies that 2^{\aleph_0} is very large.
- (b) $(\mathcal{P}, \mathcal{H}(2^{\aleph_0}))_{\Sigma_2}$ -RcA⁺ implies that 2^{\aleph_0} is a limit cardinal.
 - Thus, if 2^{\aleph_0} is regular in addition, then 2^{\aleph_0} is weakly inaccessible.
- (c) If there is a weakly inaccessible cardinal above 2^{\aleph_0} , then $(\mathcal{P}, \mathcal{H}(2^{\aleph_0}))_{\Sigma_2}$ -RcA⁺ implies that 2^{\aleph_0} is a limit of inaccessible cardinals.

Proof. (a): To prove e.g. that $2^{\aleph_0} > \aleph_{\omega}$, let $\mathbb{P} \in \mathcal{P}$ be s.t. $\Vdash_{\mathbb{P}} "2^{\aleph_0} > \aleph_{\omega}$. Then by $(\mathcal{P}, \emptyset)_{\Sigma_2}$ -RcA⁺, there is a \mathcal{P} -ground W of V s.t. $W \models 2^{\aleph_0} > \aleph_{\omega}$. Since V is \mathcal{P} -gen. extension of W and \mathcal{P} preserves cardinals, it follows that $V \models 2^{\aleph_0} > \aleph_{\omega}$.

(b): Suppose $\mu < 2^{\aleph_0}$. Then $\mu \in \mathcal{H}(2^{\aleph_0})$. There is $\mathbb{P} \in \mathcal{P}$ s.t. $\| \cdot _{\mathbb{P}} \cdot ^{\circ} 2^{\aleph_0} > \mu^+ \cdot ^{\circ}$. By $(\mathcal{P}, \mathcal{H}(2^{\aleph_0}))_{\Sigma_2}$ -RcA⁺, it follows that there is a \mathcal{P} -ground W of V which satisfies this statement. Since \mathcal{P} preserves cardinals it follows that $V \models 2^{\aleph_0} > \mu^+$. (c): ... \square (Proposition 8) Consistency strength of Maximality Principles (= Recurrence Axioms⁺) Generic Absoluteness Revisited (13/21)

- Maximality Principles and hence also Recurrence Axioms have relatively low consistency strength.
- **Theorem 9.** (Hamkins ^[3], Asperó ^[5]) The following theories are equiconsistent to each other and they are also equiconsistent with ZFC + there are stationarily many inaccessibles:

 $\mathsf{ZFC} + \mathsf{MP}(\mathsf{all p.o.s, } \mathcal{H}(2^{\aleph_0})), \quad \mathsf{ZFC} + \mathsf{MP}(\mathsf{c.c.c p.o.s, } \mathcal{H}(2^{\aleph_0})),$

ZFC + MP(proper p.o.s, $\mathcal{H}(2^{\aleph_0}))$,

ZFC + MP(semi-proper p.o.s, $\mathcal{H}(2^{\aleph_0})$).

► Caution!! The exact consistency strength of ZFC + MP(stationary preserving p.o.s, H(2^{ℵ₀})) is not known and its lower bound is much higher than the consistency strength in Theorem 9.

^[3] Joel Hamkins, A simple maximality principle, The Journal of Symbolic Logic Vol.68, no.7, (2003), 527–550.

[5] David Asperó, A Maximal Bounded Forcing, The Journal of SymbolicLogic, Vol.67, No.1 (2002), 130–142.

Generic absoluteness under restricted Recurrence Axioms Generic Absoluteness Revisited (14/21)

- ► The following Ikegami-Trang Absoluteness Theorem extends Bagaria's Absoluteness Th. **Theorem 10.** (Ikegami, and Trang ^[6]) For an iterable class \mathcal{P} of
 - p.o.s, and a cardinal κ the following are equivalent:
- (a) $(\mathcal{P}, \mathcal{H}(\kappa))_{\Sigma_1}$ -RcA⁺. (b) $(\mathcal{P}, \mathcal{H}(\kappa))_{\Sigma_1}$ -RcA. (c) BFA_{< κ} (\mathcal{P}) .
- ▷ Theorem 10 together with Proposition 5 implies BFA_{< κ_{refl}} (proper p.o.s) → $2^{\aleph_0} = \aleph_2$.
- **Theorem 11.** ([S.F. & Gappo & Parente]) Suppose that \mathcal{P} is an iterable Σ_n -definable class of p.o.s for $n \geq 2$ and $(\mathcal{P}, \mathcal{H}(\kappa))_{\Sigma_n \cup \Gamma}$ -RcA⁺ holds for an uncountable cardinal κ where Γ is a set of formulas which are conjunction of a Σ_2 -formula and a Π_2 -formula.
- $\begin{tabular}{ll} & \vdash \begin{tabular}{ll} \begin{tabular}{ll} & \vdash \begin\$

 $\succ \text{ Thus, we have } \quad \mathcal{H}(\kappa)^{\mathsf{V}} \prec_{\Sigma_2} \mathcal{H}((\kappa^{(+)})^{\mathsf{V}[\mathbb{G}]})^{\mathsf{V}[\mathbb{G}]}.$

Proof of Theorem 11

cf.: Viale's Theorem

^[6] Daisuke Ikegami and Nam Trang, On a class of maximality principles, Archive for Mathematical Logic, Vol. 57, (2018), 713–725.

Tightly *P*-Laver-gen. ultrahuge cardinal

Generic Absoluteness Revisited (15/21)

ГŤ

For an iterable class *P* of p.o.s, a cardinal κ is said to be (tightly)
 P-Laver-generically ultrahuge, if

for any $\lambda > \kappa$ and $\mathbb{P} \in \mathcal{P}$ there is a \mathbb{P} -name \mathbb{Q} with $\|_{\mathbb{P}^{w}} \stackrel{\circ}{\cong} \mathcal{P}$, s.t. for

- $(\mathsf{V}, \mathbb{P} * \mathbb{Q})$ -generic \mathbb{H} , there are $j, M \subseteq \mathsf{V}[\mathbb{H}]$ s.t. $j : \mathsf{V} \xrightarrow{\prec}_{\kappa} M, j(\kappa) > \lambda$, $\mathbb{P}, \mathbb{H}, (V_{j(\lambda)})^{\mathsf{V}[\mathbb{H}]} \in M$ and $|\mathbb{P} * \mathbb{Q}| \leq j(\kappa)$ (more precisely: $\mathbb{P} * \mathbb{Q}$ is forcing equivalent to a p.o. of size $\leq j(\kappa)$).
- **Theorem 12.** ([S.F. & Gappo & Parente]) If κ is tightly \mathcal{P} -Laver-gen. ultrahuge for an iterable class \mathcal{P} . Then $(\mathcal{P}, \mathcal{H}(\kappa))_{\Gamma}$ -RcA⁺ holds.
- * Γ = conjunctions of Σ_2 and Π_2 formulas. Proof \blacktriangleright On the other hand:
- **Theorem 13.** ([S.F.1]) Tightly \mathcal{P} -Laver-gen. ultrahugeness does not imply MP(\mathcal{P}, \emptyset) (under the assumption of a large cardinal slightly more than the ultrahuge).
- ▷ The proof of Theorem 13 can be modified to show the non-implication of (P, Ø)_{Π3}-RcA from a generic large cardinal for many instances of P.
 "Γ" in Theorem 12 for such P is almost optimal.

Generic absoluteness under *P*-Laver-gen. large cardinals Generic Absoluteness Revisited (16/21)

- ▶ The following is a corollary of Theorem 11 (and Theorem 12 for (2)) :
- **Corollary 14.** (1) Suppose that $(\mathcal{P}, \mathcal{H}(\kappa))$ -RcA⁺ holds for an iterable \mathcal{P} . Then, for for any $\mathbb{P} \in \mathcal{P}$ s.t. $\Vdash_{\mathbb{P}}$ " BFA_{< κ} (\mathcal{P}) ", we have $\mathcal{H}(\mu^+)^{\mathsf{V}} \prec_{\Sigma_2} \mathcal{H}(\mu^+)^{\mathsf{V}[\mathbb{G}]}$ for all $\mu < \kappa$ and for (V, \mathbb{P}) -generic \mathbb{G} . Thus, $\mathcal{H}(\kappa)^{\mathsf{V}} \prec_{\Sigma_2} \mathcal{H}((\kappa^{(+))})^{\mathsf{V}[\mathbb{G}]})^{\mathsf{V}[\mathbb{G}]}$.
 - (2) Suppose that κ is tightly \mathcal{P} -Laver-gen. ultrahuge for an iterable and Σ_2 -definable \mathcal{P} . Then, for for any $\mathbb{P} \in \mathcal{P}$ s.t. $\Vdash_{\mathbb{P}}$ "BFA $_{<\kappa}(\mathcal{P})$ ", we have $\mathcal{H}(\mu^+)^{\mathsf{V}} \prec_{\Sigma_2} \mathcal{H}(\mu^+)^{\mathsf{V}[\mathbb{G}]}$ for all $\mu < \kappa$ and for (V, \mathbb{P}) -generic \mathbb{G} . Thus, $\mathcal{H}(\kappa)^{\mathsf{V}} \prec_{\Sigma_2} \mathcal{H}((\kappa^{(+))})^{\mathsf{V}[\mathbb{G}]})^{\mathsf{V}[\mathbb{G}]}$.
- \blacktriangleright By a direct proof, we can improve (2) of the Corollary 14:
- **Theorem 15.**([S.F. & Gappo & Parente]) For an iterable class \mathcal{P} of p.o.s, suppose that $\underline{\mathsf{BFA}}_{<\kappa}(\mathcal{P})$ holds, and κ is tightly \mathcal{P} -Laver-gen. huge. Then, for any $\mathbb{P} \in \mathcal{P}$ s.t. $\Vdash_{\mathbb{P}}$ "BFA $_{<\kappa}(\mathcal{P})$ ", we have $\overline{\mathcal{H}(\mu^+)}^{\mathsf{V}} \prec_{\Sigma_2} \mathcal{H}(\mu^+)^{\mathsf{V}[\mathbb{G}]}$ for all $\mu < \kappa$ and for (V, \mathbb{P})-generic \mathbb{G} . Thus, $\mathcal{H}(\kappa)^{\mathsf{V}} \prec_{\Sigma_2} \mathcal{H}((\kappa^{(+)})^{\mathsf{V}[\mathbb{G}]})^{\mathsf{V}[\mathbb{G}]}$.

Generic absoluteness under \mathcal{P} -Laver-gen. large cardinals (2/2) Generic Absoluteness Revisited (17/21)

Theorem 15.([S.F. & Gappo & Parente]) For an iterable class \mathcal{P} of p.o.s, suppose that $\underline{\mathsf{BFA}}_{<\kappa}(\mathcal{P})$ holds, and κ is tightly \mathcal{P} -Laver-gen. huge. Then, for any $\mathbb{P} \in \mathcal{P}$ s.t. $\Vdash_{\mathbb{P}}$ "BFA $_{<\kappa}(\mathcal{P})$ ", we have $\mathcal{H}(\mu^+)^{\mathsf{V}} \prec_{\Sigma_2} \mathcal{H}(\mu^+)^{\mathsf{V}[\mathbb{G}]}$ for all $\mu < \kappa$ and for (V, \mathbb{P})-generic \mathbb{G} . Thus, $\mathcal{H}(\kappa)^{\mathsf{V}} \prec_{\Sigma_2} \mathcal{H}(\kappa^{(+)})^{\mathsf{V}[\mathbb{G}]})^{\mathsf{V}[\mathbb{G}]}$.

Proof

- ▶ BFA_{< κ}(P) in the assumption of Theorem 15 is absorbed in the Laver-genericity part of the assumption if we assume the Lever-genericity for a slightly (?) stronger notion of large cardinal:
- **Theorem 16.** (^[7], see also [S.F. & Gappo & Parente]) (1) Suppose that κ is \mathcal{P} -Laver-gen. supercompact. Then $FA_{<\kappa}(\mathcal{P})$ holds.
 - (2) If all elements of the class \mathcal{P} of p.o.s are stationary preserving and κ is \mathcal{P} -Laver-gen. supercompact, then $\mathsf{FA}^{+<\kappa}_{<\kappa}(\mathcal{P})$ holds.

^[7] S.F., A. Ottenbreit Maschio Rodrigues, and H. Sakai, Strong Löwenheim-Skolem theorems for stationary logics, II — reflection down to the continuum, Archive for Mathematical Logic, Volume 60, issue 3-4, (2021), 495–523.

Ground Axiom and generic absoluteness

► The Ground Axiom (GA) asserts that there is no proper ground of the universe V.

Generic Absoluteness Revisited (18/21)

(Corollary 18)

Theorem 17. MM^{++} + "there are class many supercompact cardinals" is consistent with GA.

Proof. MM^{++} is preserved by $< \omega_2$ -directed closed forcing (Larson, Cox ^[8], Theorem 4.7). Starting from a model with cofinally many supercompact cardinals, use the first supercompact to force MM^{++} . Then the class forcing just like that in the proof of Laver's indestructibility theorem will produce a desired model. \square (Theorem 17)

 $\begin{array}{l} \mbox{Corollary 18. (cf. [S.F. \& Gappo \& Parente]) The conclusion of Viale's Theorem :} \\ \mathcal{H}(\aleph_2)^V \prec_{\Sigma_2} \mathcal{H}(\aleph_2)^{V[\mathbb{G}]} & \mbox{for all stationary preserving } \mathbb{P} \\ & \mbox{ and } (V, \mathbb{P}) \mbox{-generic } \mathbb{G} \end{array}$

is consistent with GA.

Proof. By Viale's Absoluteness Theorem and Theorem 17.

^[8] Sean D. Cox, Forcing axioms, approachability, and stationary set reflection, The Journal of Symbolic Logic Volume 86, Number 2, June 2021, 499–530. Ground Axiom and generic absoluteness (2/2) Generic Absoluteness Revisited (19/21)

- **Theorem 17.** MM⁺⁺ + "there are class many supercompact cardinals" is consistent with GA.
- **Lemma 19.** $GA + \mathfrak{b} > \aleph_1$ implies $\neg (ccc, \emptyset)_{\Sigma_2}$ -RcA and $\neg (ccc, \emptyset)_{\Pi_2}$ -RcA.

Proof. Assume that $GA + MA + \neg CH$ holds. Let \mathbb{P} be a p.o. adding \aleph_1 Cohen reals then we have $\Vdash_{\mathbb{P}}$ " $\mathfrak{b} = \aleph_1$ ". If $(\mathit{ccc}, \emptyset)_{\Sigma_2}$ -RcA⁺ holds then, since $\mathfrak{b} = \aleph_1$ is Σ_2 , there is a ground satisfying this equation. The ground must be different from V since $V \models \mathfrak{b} > \aleph_1$. This is a contradiction. For $\neg (\mathit{ccc}, \emptyset)_{\Pi_1}$ -RcA⁺, argue similarly e.g. using the fact that $\mathfrak{b} < \mathfrak{d}$ is Π_2 .

(Lemma 19)

Corollary 20.([S.F. & Gappo & Parente]) MM^{++} + "there are class many supercompact cardinals" does not imply the existence of a tightly \mathcal{P} -Laver gen. ultrahuge cardinal for any class \mathcal{P} of p.o.s containing p.o. for adding \aleph_1 many Cohen reals.

Proof. Work in ZFC + MM⁺⁺ + "there are class many supercompact cardinals" + GA (Theorem 17). By Lemma 19 and Theorem 12, this theory proves that there is no tightly \mathcal{P} -Laver-gen. ultrahuge cardinal.

Some (presumably relatively easiy) open problems Generic Absoluteness Revisited (20/21)

- Is the conclusion of Theorems 11 and 15 consistent with GA for P other than "stationary preserving" and with the continuum other than ℵ₂ ?
- ▶ Does (tightly) P-Laver-gen. supercompactness already imply $\neg GA$?

Thank you for your attention! ご清聴ありがとうございました.

관심을 가져 주셔서 감사합니다 Dziękuję za uwagę. Ich danke Ihnen für Ihre Aufmerksamkeit Tightly super- $C^{(\infty)}$ \mathcal{P} -Laver-gen. ultrahuge cardinal

- The following strengthening of tightly *P*-Laver-gen. ultrahugeness of κ (which is formulated in an axiom scheme) implies MP(*P*, *H*(κ)).
- ► For a natural number *n*, we call a cardinal κ super- $C^{(n)}$ -hyperhuge if for any $\lambda_0 > \kappa$ there are $\lambda \ge \lambda_0$ with $V_\lambda \prec_{\Sigma_n} V$, and *j*, $M \subseteq V$ s.t. $j : V \xrightarrow{\prec}_{\kappa} M$, $j(\kappa) > \lambda$, $j(\lambda)M \subseteq M$ and $V_{j(\lambda)} \prec_{\Sigma_n} V$.
- ▶ κ is super- $C^{(n)}$ -ultrahuge if the condition above holds with " $j(\lambda)M \subseteq M$ " replaced by " $j(\kappa)M \subseteq M$ and $V_{j(\lambda)} \subseteq M$ ".
- \triangleright If κ is super- $C^{(n)}$ -hyperhuge then it is super- $C^{(n)}$ -ultrahuge.
- We shall also say that κ is super-C^(∞)-hyperhuge (super-C^(∞)-ultrahuge, resp.) if it is super C⁽ⁿ⁾-hyperhuge (super-C⁽ⁿ⁾-ultrahuge, resp.) for all natural number n.
- ► A similar kind of strengthening of the notions of large cardinals which we call here "super-C⁽ⁿ⁾" appears also in Boney [Boney]. It is called "C⁽ⁿ⁾⁺", and is considered there in connection with extendibility.

[Boney] Will Boney, Model Theoretic Characterizations of Large Cardinals, Israel Journal of Mathematics, 236, (2020), 133–181.

Tightly super- $C^{(\infty)} \mathcal{P}$ -Laver-gen. ultrahuge cardinal (2/6) For a natural number *n* and an iterable class \mathcal{P} of p.o.s, a cardinal κ is super- $C^{(n)} \mathcal{P}$ -Laver-generically ultrahuge (super- $C^{(n)} \mathcal{P}$ -Laver-gen. ultrahuge, for short) if, for any $\lambda_0 > \kappa$ and for any $\mathbb{P} \in \mathcal{P}$, there are a $\lambda \ge \lambda_0$ with $V_{\lambda} \prec_{\Sigma_n} V$, a \mathcal{P} -name \mathbb{Q} with $\|\vdash_{\mathbb{P}} \mathbb{Q} \in \mathcal{P}$ ", and *j*, $M \subseteq V[\mathbb{H}]$ s.t. $j : V \stackrel{\sim}{\to}_{\kappa} M$, $j(\kappa) > \lambda$, \mathbb{P} , \mathbb{H} , $V_{j(\lambda)} \bigvee^{V[\mathbb{H}]} \in M$ and $V_{j(\lambda)} \bigvee^{V[\mathbb{H}]} \prec_{\Sigma_n} V[\mathbb{H}]$.

- ▷ A super- $C^{(n)}$ \mathcal{P} -Laver-generically ultrahuge cardinal κ is tightly super- $C^{(n)}$ \mathcal{P} -Laver-generically ultrahuge (tightly super- $C^{(n)}$ \mathcal{P} -Laver-gen. ultrahuge, for short), if $|\mathbb{P} * \mathbb{Q}| \le j(\kappa)$.
- ► Super-C^(∞) P-Laver-gen. ultrahugeness and tightly super-C^(∞) P-Laver gen. ultrahugeness are defined similarly to super-C^(∞) ultrahugeness.
- Note that, in general, super-C^(∞) hyperhugeness and super-C^(∞) ultrahugeness are notions unformalizable in the language of ZFC without introducing a new constant symbol for κ since we need infinitely many L_ε-formulas to formulate them.
- \triangleright Exceptions are ...

Tightly super- $C^{(\infty)} \mathcal{P}$ **-Laver-gen. ultrahuge cardinal (3/6)** \rhd Exceptions are when we are talking about a cardinal in a set model being with one of these properties, or when we are talking about a cardinal definable in V having these properties in an inner model. In the latter case, the situation is formalizable with infinitely may $\mathcal{L}_{\varepsilon}$ -sentences.

- In contrast, the super-C^(∞) P-Laver gen. ultrahugeness of κ is expressible in infinitely many L_ε-sentences. This is because a P-Laver gen. large cardinal κ for relevant classes P of p.o.s is uniquely determined as κ_{ttfl} or 2^{ℵ0} (see e.g. [II] or [S.F.]).
- **Theorem 21.** ([S.F. & Usuba]) Suppose that \mathcal{P} is an iterable class of p.o.s and κ is tightly super- $\mathcal{C}^{(\infty)}$ \mathcal{P} -Laver-gen. ultrahuge. Then $(\mathcal{P}, \mathcal{H}(\kappa))$ -RcA⁺ (i.e. MP $(\mathcal{P}, \mathcal{H}(\kappa))$) holds.
- Proof. Similarly to Theorem 12.
- **Corollary 21a.** "there is a tightly super- C^{∞} (stationary preserving p.o.s) -Laver-gen. hyperhuge cardinal" is strictly stronger than MM⁺⁺.

LФ

・ロト・西ト・ヨト・ヨト・ 日・ うらぐ

Tightly super-C^(∞) P-Laver-gen. ultrahuge cardinal (4/6)
 Consistency of tightly super-C^(∞) P-Laver-gen. ultrahuge cardinal for reasonable P follows from 2-huge.

Lemma 22. ([S.F. & Usuba]) Suppose that κ is 2-huge with the 2-huge elementary embedding j, that is, $j : V \xrightarrow{\prec}_{\kappa} M \subseteq V$, for some $M \subseteq V$ and $j^{2(\kappa)}M \subseteq M$. Then $V_{j(\kappa)} \models \kappa$ is super- $C^{(\infty)}$ -hyperhuge cardinal", and for each $n \in \omega$, $V_{j(\kappa)} \models \kappa$ there are stationarily many super- $C^{(n)}$ -hyperhuge cardinals".

Theorem 23. ([S.F. & Usuba]) Suppose that μ is an inaccessible cardinal and κ is super- $C^{(\infty)}$ -hyperhuge in V_{μ} . Then there is a Laver function $f : \kappa \to V_{\kappa}$ for super- $C^{(\infty)}$ -hyperhugeness in V_{μ} .

Tightly super- $C^{(\infty)}$ \mathcal{P} -Laver-gen. ultrahuge cardinal (5/6)

- **Theorem 24.** ([S.F. & Usuba]) (1) Suppose that μ is inaccessible and $\kappa < \mu$ is super- $C^{(\infty)}$ -ultrahuge in V_{μ} . Let $\mathbb{P} = \operatorname{Col}(\aleph_1, \kappa)$. Then, in $V_{\mu}[\mathbb{G}]$, for any V_{μ} , \mathbb{P} -generic \mathbb{G} , $\aleph_2^{V_{\mu}[\mathbb{G}]}$ (= κ) is tightly super- $C^{(\infty)}$ σ -closed-Laver-gen. ultrahuge and CH holds.
- (2) Suppose that μ is inaccessible and $\kappa < \mu$ is super- $C^{(\infty)}$ -ultrahuge with a Laver function $f : \kappa \to V_{\kappa}$ for super- $C^{(\infty)}$ -ultrahugeness in V_{μ} . If \mathbb{P} is the CS-iteration of length κ for forcing PFA along with f, then, in $V_{\mu}[\mathbb{G}]$ for any (V_{μ}, \mathbb{P}) -generic \mathbb{G} , $\aleph_{2}^{V_{\mu}[\mathbb{G}]} (= \kappa)$ is tightly super- $C^{(\infty)}$ proper-Laver-gen. ultrahuge and $2^{\aleph_{0}} = \aleph_{2}$ holds.
- (2') Suppose that μ is inaccessible and $\kappa < \mu$ is super- $C^{(\infty)}$ -ultrahuge with a Laver function $f : \kappa \to V_{\kappa}$ for super- $C^{(\infty)}$ -ultrahugeness in V_{μ} . If \mathbb{P} is the RCS-iteration of length κ for forcing MM along with f, then, in $V_{\mu}[\mathbb{G}]$ for any (V_{μ}, \mathbb{P}) -generic \mathbb{G} , $\aleph_2^{V_{\mu}[\mathbb{G}]} (=\kappa)$ is tightly super- $C^{(\infty)}$ semi-proper-Laver-gen. ultrahuge and $2^{\aleph_0} = \aleph_2$ holds.

Tightly super- $C^{(\infty)}$ \mathcal{P} -Laver-gen. ultrahuge cardinal (6/6)

(3) Suppose that μ is inaccessible and κ is super-C^(∞)-ultrahuge with a Laver function f : κ → V_κ for super-C^(∞)-ultrahugeness in V_μ. If ℙ is a FS-iteration of length κ for forcing MA along with f, then, in V_μ[G] for any (V_μ, ℙ)-generic G, 2^{ℵ0} (= κ) is tightly super-C^(∞) c.c.c.-Laver-gen. ultrahuge, and κ is very large in V_μ[G].

(4) Suppose that μ is inaccessible and κ is super- $C^{(\infty)}$ -ultrahuge with a Laver function $f : \kappa \to V_{\kappa}$ for super- $C^{(\infty)}$ -ultrahugeness in V_{μ} . If \mathbb{P} is a FS-iteration of length κ along with f enumerating "all" p.o.s, then, in $V_{\mu}[\mathbb{G}]$ for any (V_{μ}, \mathbb{P}) -generic \mathbb{G} , 2^{\aleph_0} (= \aleph_1) is tightly super- $C^{(\infty)}$ all p.o.s-Laver-gen. ultrahuge, and CH holds.

・ロト ・ 理ト ・ ヨト ・ ヨー ・ のへで

Bedrock of tightly \mathcal{P} -gen. hyperhuge cardinal

- Recall that a cardinal κ is hyperhuge, if for every λ > κ, there is j : V →_κ M ⊆ V s.t. λ < j(κ) and ^{j(λ)}M ⊆ M. A hyperhuge cardinal κ can be characterized in terms of existence of κ-complete normal ultrafilters with certain additional properties (e.g. see [S.F. & Usuba]).
- For a class P of p.o.s, a cardinal κ is tightly P-generic hyperhuge (tightly P-gen. hyperhuge, for short) if for any λ > κ, there is Q ∈ P s.t. for a (V, Q)-generic H, there are j, M ⊆ V[H] s.t. j : V →_κ M, λ < j(κ), |Q| ≤ j(κ), and j″j(λ), H ∈ M.</p>
- ► For a class \mathcal{P} of p.o.s, a cardinal κ is tightly \mathcal{P} -Laver-generically hyperhuge (tightly \mathcal{P} -Laver-gen. hyperhuge, for short) if for any $\lambda > \kappa$, and $\mathbb{P} \in \mathcal{P}$ there is a \mathbb{P} -name \mathbb{Q} with $\| \vdash_{\mathbb{P}} \mathbb{Q} \in \mathcal{P}$ " s.t. for a $(\mathsf{V}, \mathbb{P} * \mathbb{Q})$ -generic \mathbb{H} , there are $j, M \subseteq \mathsf{V}[\mathbb{H}]$ s.t. $j : \mathsf{V} \xrightarrow{\prec}_{\kappa} M$, $\lambda < j(\kappa), \| \mathbb{P} * \mathbb{Q} \| \leq j(\kappa)$, and $j''j(\lambda), \mathbb{H} \in M$.

Bedrock of tightly \mathcal{P} -gen. hyperhuge cardinal (2/6) For an itengble P. hypenhuge Hightly P-gen, hyperhuge tightly P-Lawer, gen. hy per huge tightly supe (10)-P-Laver gen, hypen huge tightly supe Cas- P-Laver gen, Ultrahuge

Bedrock of tightly *P*-gen. hyperhuge cardinal (3/6)
For a cardinal κ, a ground W of the universe V is called a ≤ κ-ground if there is a p.o. P ∈ W of cardinality ≤ κ (in the sense of V) and (W, P)-generic filter G s.t. V = W[G].
Let

 $\overline{\mathsf{W}} := \bigcap \{ \mathsf{W} : \mathsf{W} \text{ is } \mathsf{a} \leq \kappa \text{-ground} \}.$

Since there are only set many $\leq \kappa$ -grounds, \overline{W} contains a ground by Theorem 1.3 in [Usuba]. We shall call \overline{W} defined above the $\leq \kappa$ -mantle of V.

▶ The following theorem generalizes Theorem 1.6 in [Usuba].

Theorem 25. ([S.F. & Usuba]) Suppose that \mathcal{P} is any class of p.o.s. If κ is a tightly \mathcal{P} -gen. hyperhuge cardinal, then the $\leq \kappa$ -mantle is the smallest ground of V (i.e. it is the bedrock of V) and it is also a $\leq \kappa$ -ground.

[Usuba] Toshimichi Usuba, The downward directed grounds hypothesis and very large cardinals, Journal of Mathematical Logic, Vol. 17(2) (2017), 1–24.

Bedrock of tightly \mathcal{P} -gen. hyperhuge cardinal (4/6)

Theorem 25. ([S.F. & Usuba]) Suppose that \mathcal{P} is any class of p.o.s. If κ is a tightly \mathcal{P} -gen. hyperhuge cardinal, then the $\leq \kappa$ -mantle is the smallest ground of V (i.e. it is the **bedrock** of V) and it is also a $\leq \kappa$ -ground.

A very rough sketch of the Proof.

► Analyzing the proof of Theorem 25, we also obtain:

Theorem 26. ([S.F. & Usuba]) Suppose that \mathcal{P} is any class of p.o.s. If κ is a tightly \mathcal{P} -gen. hyperhuge cardinal, then κ is a hyperhuge cardinal in the bedrock \overline{W} of V.

ГŤ

Theorem 27. ([S.F. & Usuba]) Suppose that \mathcal{P} is any class of p.o.s. If κ is a tightly super- $C^{(n)} \mathcal{P}$ -gen. hyperhuge cardinal, then κ is a super- C^n -hyperhuge cardinal in the bedrock \overline{W} of V.

► These Theorems have many strong consequences. Some of them are ...

Equiconsistency as the Eternal Recurrence

- **Corollary 28.**([S.F. & Usuba]) Suppose that \mathcal{P} is the class of all p.o.s. Then the following theories are equiconsistent:
 - (a)ZFC + ''there is a hyperhuge cardinal''.
 - (b)ZFC + "there is a tightly \mathcal{P} -Laver gen. hyperhuge cardinal".
 - (c)ZFC + "there is a tightly \mathcal{P} -gen. hyperhuge cardinal".
 - (d)ZFC + "bedrock \overline{W} exists and ω_1 is a hyperhuge cardinal in \overline{W} ". \Box
- **Corollary 29.**([S.F. & Usuba]) Suppose that \mathcal{P} is one of the following classes of p.o.s: all semi-proper p.o.s; all proper p.o.s; all ccc p.o.s; all σ -closed p.o.s. Then the following theories are equiconsistent:
 - (a)ZFC + "there is a hyperhuge cardinal".
 - $(\,b\,)\mathsf{ZFC}$ + "there is a tightly $\mathcal{P}\text{-Laver gen.}$ hyperhuge cardinal".
 - (c)ZFC + "there is a tightly \mathcal{P} -gen. hyperhuge cardinal".
 - (d)ZFC + "bedrock \overline{W} exists and $\kappa_{\mathfrak{refl}}$ is a hyperhuge cardinal in \overline{W} ".

・ロト ・ 日 ・ モ ト ・ モ ・ うへつ

Cf.: Theorem 24, and Theorem 27.

Equiconsistency as the Eternal Recurrence (2/2)

- **Corollary 30.**([S.F. & Usuba]) Suppose that \mathcal{P} is the class of all p.o.s. Then the following theories are equiconsistent:
- (a)ZFC + "there is a tightly super- $C^{(\infty)}$ \mathcal{P} -Laver gen. hyperhuge cardinal".
- (b)ZFC + "bedrock \overline{W} exists and ω_1^V is a super- $C^{(\infty)}$ -hyperhuge cardinal in \overline{W} ".

・ロト ・ 日 ・ モ ト ・ モ ・ うへつ

- **Corollary 31.**([S.F. & Usuba]) Suppose that \mathcal{P} is one of the following classes of p.o.s: all semi-proper p.o.s; all proper p.o.s; all ccc p.o.s; all σ -closed p.o.s. Then the following theories are equiconsistent:
 - (a)ZFC + "there is a tightly super- $C^{(\infty)}$ \mathcal{P} -Laver gen. hyperhuge cardinal".
 - (b)ZFC + "bedrock \overline{W} exists and $\kappa_{\mathfrak{refl}} V$ is a super- $C^{(\infty)}$ -hyperhuge cardinal in \overline{W} ".

Toward the Laver-generic Maximum

- ► The existence of tightly super-C^(∞) P-Laver gen. superhuge cardinal for the class P of all semi-proper p.o.s is one of the strongest principle we considered so far. It implies the tightly super-C^(∞) P-Laver gen. superhuge cardinal is 2^{ℵ0} = ℵ₂ and MM⁺⁺ holds (see [II] or [S.F.1]), the existence of the bedrock (Theorem 25), and (P, H(ℵ₂))-RcA⁺ (Theorem 21).
- MM⁺⁺ implies many preferable set-theoretic axioms/principles including Woodin's (*) ([Aspero-Schindler]).
- [Aspero-Schindler] David Asperó, and Ralf Schindler, Martin's Maximum++ implies Woodin's axiom (*). Annals of Mathematics, 193(3), (2021), 793-835.
- \triangleright ($\mathcal{P}, \mathcal{H}(\aleph_2)$)-RcA⁺ claims that any property (even with any subset of ω_1 as parameter) forcable by a semi-proper p.o., is a theorem in some semi-proper ground. E.g. Cichón's Maximum is what happens in a semi-proper ground.
- ▶ Strong forms of Resurrection Axiom are also consequences of the existence of the super-*C*^(∞) (semi-proper)-Laver gen. large cardinal:

Toward the Laver-generic Maximum (2/4)

- Suppose that P is a class of p.o.s and µ[●] is a definition of a cardinal (e.g. "ℵ₁", "ℵ₂", "2^{ℵ₀}")
- The following boldface version of the Resurrection Axioms is considered in [Hamkins-Johnstone]:

 $\mathbb{RA}_{\mathcal{H}(\mu^{\bullet})}^{\mathcal{P}} : \text{ For any } A \subseteq \mathcal{H}(\mu^{\bullet}) \text{ and any } \mathbb{P} \in \mathcal{P}, \text{ there is a } \mathbb{P}\text{-name } \mathbb{Q}$ of p.o. s.t. $\Vdash_{\mathbb{P}}^{"} \mathbb{Q} \in \mathcal{P}^{"}$ and, for any $(\mathsf{V}, \mathbb{P} * \mathbb{Q})\text{-generic } \mathbb{H}$, there is $A^* \subseteq \mathcal{H}(\mu^{\bullet})^{\mathsf{V}[\mathbb{H}]}$ s.t. $(\mathcal{H}(\mu^{\bullet})^{\mathsf{V}}, A, \in) \prec (\mathcal{H}(\mu^{\bullet})^{\mathsf{V}[\mathbb{H}]}, A^*, \in).$

Theorem 32. [S.F.1] For an iterable class of p.o.s \mathcal{P} , if $\kappa_{\mathfrak{refl}}$ is tightly \mathcal{P} -Laver-gen. superhuge, then $\mathbb{RA}^{\mathcal{P}}_{\mathcal{H}(\kappa_{\mathfrak{refl}})}$ holds.

[Hamkins-Johnstone] Joel David Hamkins, and Thomas A. Johnstone, Strongly uplifting cardinals and the boldface resurrection axioms, Archive for Mathematical Logic Vol.56, (2017), 1115–1133.

Toward the Laver-generic Maximum (3/4)

- With a Lever-genericity corresponding to a larger large cardinal, we obtain the "tight" version of Unbounded Resurrection Principle in [Tsaprounis]:
- $\begin{aligned} \mathsf{TUR}(\mathcal{P}) : & \text{For any } \lambda > \kappa_{\mathfrak{refl}}, \text{ and } \mathbb{P} \in \mathcal{P}, \text{ there exists a } \mathbb{P}\text{-name } \mathbb{Q} \\ & \text{with } \Vdash_{\mathbb{P}}^{``} \mathbb{Q} \in \mathcal{P}^{``} \text{ s.t., for } (\mathsf{V}, \mathbb{P} \ast \mathbb{Q})\text{-gen. } \mathbb{H}, \text{ there are } \lambda^* \in \mathsf{On}, \\ & \text{and } j_0 \in \mathsf{V}[\widetilde{\mathbb{H}}] \text{ s.t. } j_0 : \mathcal{H}(\lambda)^{\mathsf{V}} \stackrel{\checkmark}{\to}_{\kappa_{\mathfrak{refl}}} \mathcal{H}(\lambda^*)^{\mathsf{V}[\mathbb{H}]}, j_0(\kappa_{\mathfrak{refl}}) > \lambda, \text{ and} \\ & \mathbb{P} \ast \mathbb{Q} \text{ is forcing equivalent to a p.o. of size } j_0(\kappa_{\mathfrak{refl}}). \end{aligned}$

Theorem 33. [S.F.1] For an iterable class \mathcal{P} , if $\kappa_{\mathfrak{refl}}$ is tightly \mathcal{P} -Laver gen. ultrahuge, then $\mathsf{TUR}(\mathcal{P})$ holds.

[Tsaprounis] Tsaprounis, On resurrection axioms, The Journal of Symbolic Logic, Vol.80, No.2, (2015), 587–608.

・ロト ・ 日 ・ モ ト ・ モ ・ うへつ

Toward the Laver-generic Maximum (4/4)

- We can even establish the consistency of:
- $\triangleright 2^{\aleph_0}$ is tightly super- $C^{(\infty)}$ (semi-proper)-Laver gen. superhuge + (all p.o.s, $\mathcal{H}(\aleph_1)^{\overline{W}}$)-RcA
- A construction of a model: Work in a model V_{λ} where κ is super- $C^{(\infty)}$ -hyperhuge. Then $V_{\kappa} \prec V_{\lambda}$. Take an inaccessible $\delta < \kappa$ with $V_{\delta} \prec V_{\lambda}$. Use this to force (all p.o.s, $\mathcal{H}(\aleph_1)$)-RcA. κ is still super- $C^{(\infty)}$ -hyperhuge in the generic extension, so we can use it to force 2^{\aleph_0} to be tightly super- $C^{(\infty)}$ (semi-proper)-Laver gen. superhuge. (all p.o.s, $\mathcal{H}(\aleph_1)^{\overline{W}}$)-RcA survives this forcing.

Open Problems:

- Is there any natural axiom which would imply the combination of the principles above?
- A (possibly) related question: Is there anything similar to HOD dichotomy for the bedrock under a (tightly generic/tightly Laver-generic) very large cardinal?

Recurrence Axioms are monotonic in parameters

► For classes of p.o.s \mathcal{P} , \mathcal{P}' and sets A, A' of parameters, <u>if</u> $\mathcal{P} \subseteq \mathcal{P}'$ and $A \subseteq A'$, <u>then</u> we have

 (\mathcal{P}', A') -RcA \Rightarrow (\mathcal{P}, A) -RcA.

► Note that, in general, we do not have similar implication between MP(P, A) and MP(P', A').

back

Proof of Propositions 5,6 and Lemma 7.

- **Proposition 5.** If \mathcal{P} contains a p.o. which adds a real, as well as a p.o. which (preserves \aleph_1^{\vee} but) collapses \aleph_2^{\vee} (e.g. $\mathcal{P} = \text{proper p.o.s}$) <u>then</u> $(\mathcal{P}, \mathcal{H}(\kappa_{\mathfrak{refl}}))_{\Sigma_1}$ -RcA implies $2^{\aleph_0} = \aleph_2$.
- **Proof.** Suppose that \mathcal{P} is as above and $(\mathcal{P}, \mathcal{H}(\kappa_{\mathfrak{refl}}))_{\Sigma_1}$ -RcA holds.
- ► $2^{\aleph_0} \ge \aleph_2$: Otherwise CH holds. Then $\mathcal{P}(\omega)^{\vee} \in \mathcal{H}(\kappa_{\mathfrak{refl}})$. Hence " $\exists x (x \subseteq \omega \land x \notin \mathcal{P}(\omega)^{\vee})$ " is a Σ_1 -formula with parameters from $\mathcal{H}(\kappa_{\mathfrak{refl}})$ and $\mathbb{P} \in \mathcal{P}$ adding a real forces (the formula in forcing language corresponding to) this formula.
- \triangleright By $(\mathcal{P}, \mathcal{H}(\kappa_{\mathfrak{refl}}))_{\Sigma_1}$ -RcA, the formula must hold in a ground. This is a contradiction.
- ▶ $2^{\aleph_0} \leq \aleph_2$: If $2^{\aleph_0} > \aleph_2$ then \aleph_1^V , $\aleph_2^V \in \mathcal{H}(2^{\aleph_0}) \subseteq \mathcal{H}(\kappa_{\mathfrak{refl}})$. Let $\mathbb{P} \in \mathcal{P}$ be a p.o. which preserves \aleph_1 but collapses \aleph_2 .
- ▷ Letting $\psi(x, y)$ a Σ_1 -formula saying " $\exists f(f \text{ is a surjection from } x \text{ to } y)$ ", we have $\Vdash_{\mathbb{P}}$ " $\psi((\aleph_1^{V})^{\checkmark}, (\aleph_2^{V})^{\checkmark})$ ".
- ▷ By $(\mathcal{P}, \mathcal{H}(2^{\aleph_0}))_{\Sigma_1}$ -RcA, the formula $\psi(\aleph_1^V, \aleph_2^V)$ must hold in a ground. This is a contradiction. \square \square

Proof of Propositions 5,6 and Lemma 7. (2/3)

Proposition 6. If \mathcal{P} contains a p.o. which preserves \aleph_1^V but collapses \aleph_2 , and also a p.o. which collapses \aleph_1^V (e.g. $\mathcal{P} = \mathsf{all p.o.s}$) <u>then</u> $(\mathcal{P}, \mathcal{H}(2^{\aleph_0}))_{\Sigma_1}$ -RcA implies $2^{\aleph_0} = \aleph_1$.

Proof. We have $2^{\aleph_0} \leq \aleph_2$, by the second half of the proof of Proposition 5. If $2^{\aleph_0} = \aleph_2$, then $\aleph_1^{\mathsf{V}} \in \mathcal{H}(2^{\aleph_0})$.

▷ Let $\mathbb{P} \in \mathcal{P}$ be a p.o. collapsing \aleph_1^{\vee} . I.e. $\Vdash_{\mathbb{P}} `` \aleph_1^{\vee}$ is countable". Since "··· is countable" is Σ_1 , there is a ground M s.t. $M \models `` \aleph_1^{\vee}$ is countable". This is a contradiction. (Proposition 6)

・ロト ・ 日 ・ モ ト ・ モ ・ うへつ

Proof of Propositions 5,6 and Lemma 7. (3/3)

- **Lemma 7.** (1) Suppose that $(\mathcal{P}, \mathcal{H}(\aleph_2))_{\Sigma_1}$ -RcA holds. Then all elements of \mathcal{P} are \aleph_1 -preserving and stationary preserving.
- (2) Assume $(\mathcal{P}, A)_{\Sigma_1}$ -RcA. If \mathcal{P} contains a p.o. adding a real, then $\mathcal{P}(\omega) \notin A$. If \mathcal{P} contains a p.o. collapsing $\kappa > \omega$ then $\kappa \notin A$.
- **Proof.** (1): Suppose otherwise and $\mathbb{P} \in \mathcal{P}$ is s.t. $\Vdash_{\mathbb{P}^{"}} \aleph_1^V$ is countable". Note that $\omega, \aleph_1 \in \mathcal{H}(\kappa_{\mathfrak{refl}})$.
- By (P, H(κ_{refl}))Σ₁-RcA, it follows that there is a ground W of V s.t. W ⊨"ℵ₁^V is countable". This is a contradiction.
- ► Suppose that $\mathbb{P} \in \mathcal{P}$ destroy the stationarity of $S \subseteq \omega_1$. Note that ω_1 , $S \in \mathcal{H}(\aleph_2)$. Let $\varphi = \varphi(y, z)$ be the Σ_1 -formula

 $\exists x (y \text{ is a club subset of the ordinal } y \text{ and } z \cap x = \emptyset).$ Then we have $\Vdash_{\mathbb{P}} \varphi(\omega_1, S)$. By $(\mathcal{P}, \mathcal{H}(\kappa_{\mathfrak{refl}}))_{\Sigma_1}$ -RcA, it follows that there is a ground $W \subseteq V$ s.t. $S \in W$ and $W \models \varphi(\omega_1, S)$. This is a contradiction.

(2): By the first part of the proof of Proposition 5, and the proof of Proposition 6.

・ロト ・ 日 ・ モ ト ・ モ ・ うへつ

Proof of Theorem 12.

Theorem 12. ([S.F. & Gappo & Parente]) If κ is tightly \mathcal{P} -Laver-gen. ultrahuge for an iterable class \mathcal{P} . Then $(\mathcal{P}, \mathcal{H}(\kappa))_{\Gamma}$ -RcA⁺ holds.

Proof. We prove the case $\Gamma = \Sigma_2$. p-Lg-RcA-0 in ...-revisited.pdf

Lemma 12a. If α is a limit ordinal and V_{α} satisfies a large enough fragment of ZFC, then for any $\mathbb{P} \in V_{\alpha}$ and (V, \mathbb{P}) -generic \mathbb{G} , we have $V_{\alpha}[\mathbb{G}] = V_{\alpha}^{V[\mathbb{G}]}$.

Assume that κ is tightly *P*-Laver gen. ultrahuge for an iterable class
 P of p.o.s. ▷ Suppose that φ = φ(x) is Σ₂-formula (in L_ε),
 * The general case of a Γ-formula is proved similarly. a ∈ H(κ), and ℙ ∈ P is s.t.

(a) $V \models \Vdash_{\mathbb{P}} " \varphi(a)$ ".

• Let $\lambda > \kappa$ be s.t. $\mathbb{P} \in \mathsf{V}_{\lambda}$ and

(0) $V_{\lambda} \prec_{\Sigma_n} V$ for a sufficiently large *n*.

In particular, we may assume that we have chosen the *n* above so that a sufficiently large fragment of ZFC holds in V_{λ} in the sense of Lemma 12a.

Proof of Theorem 12. (2/3)Let \mathbb{Q} be a \mathbb{P} -name s.t. $\Vdash_{\mathbb{P}} \mathbb{Q} \in \mathcal{P}$ ", and for $(\mathsf{V}, \mathbb{P} * \mathbb{Q})$ -generic \mathbb{H} , there are *i*, $M \subset V[\mathbb{H}]$ with (1) $i: V \xrightarrow{\prec} M$. (2) $i(\kappa) > \lambda$, (3) $\mathbb{P} * \mathbb{Q}$, \mathbb{P} , \mathbb{H} , $V_{i(\lambda)}^{\vee[\mathbb{H}]} \in M$, and (4) $|\mathbb{P} * \mathbb{Q}| \leq j(\kappa)$. By (4), we may assume that the underlying set of $\mathbb{P} * \mathbb{Q}$ is $j(\kappa)$ and $\mathbb{P} * \mathbb{Q} \in V_{i(\lambda)}^{\vee}$. Let $\mathbb{G} := \mathbb{H} \cap \mathbb{P}$. Note that $\mathbb{G} \in M$ by (3) and we have Since $V_{j(\lambda)}^{M} (= V_{i(\lambda)}^{V[\mathbb{H}]})$ satisfies a sufficiently large fragment of ZFC by elementarity of j, and hence the equality follows by Lemma 12a (5) $V_{j(\lambda)}^{M} = V_{j(\lambda)}^{V[\mathbb{H}]} = V_{j(\lambda)}^{V[\mathbb{H}]}.$ bv (3)

Thus, by (3), choice (0) of λ , and by the definability of grounds, we have $V_{j(\lambda)}^{\vee} \in M$ and $V_{j(\lambda)}^{\vee}[\mathbb{G}] \in M$.

Proof of Theorem 12. (3/3)

Claim 12b. $V_{j(\lambda)}^{V}[\mathbb{G}] \models \varphi(a).$

⊢ By Lemma 12a, $V_{\lambda}^{V}[\mathbb{G}] = V_{\lambda}^{V[\mathbb{G}]}$, and $V_{j(\lambda)}^{V}[\mathbb{G}] = V_{j(\lambda)}^{V[\mathbb{G}]}$ by (5). By (0), both $V_{\lambda}^{V}[\mathbb{G}]$ and $V_{j(\lambda)}^{V}[\mathbb{G}]$ satisfy large enough fragment of ZFC. Thus

(6)
$$V_{\lambda}^{\mathsf{V}}[\mathbb{G}] \prec_{\Sigma_1} V_{j(\lambda)}^{\mathsf{V}}[\mathbb{G}].$$

By (a) and (0) we have $V_{\lambda}^{\vee}[\mathbb{G}] \models \varphi(a)$. By (6) and since φ is Σ_2 , it follows that $V_{j(\lambda)}^{\vee}[\mathbb{G}] \models \varphi(a)$. \dashv (Claim 12b.) Thus we have

(7) $M \models$ "there is a \mathcal{P} -ground N of $V_{i(\lambda)}$ s.t. $N \models \varphi(a)$ ".

By the elementarity (1), it follows that

(6) $V \models$ "there is a \mathcal{P} -ground N of V_{λ} s.t. $N \models \varphi(a)$ ".

Now by (0), it follows that there is a \mathcal{P} -ground W of V s.t. W $\models \varphi(a)$. \square (Theorem 12)

A very rough sketch of the Proof of Theorem 14.

Theorem 14. ([S.F. & Usuba]) Suppose that \mathcal{P} is any class of p.o.s. If κ is a tightly \mathcal{P} -gen. hyperhuge cardinal, then the $\leq \kappa$ -mantle is the smallest ground of V (i.e. it is the bedrock of V) and it is also a $\leq \kappa$ -ground.

A rough sketch of the Proof.

- Suppose that κ is tightly \mathcal{P} -gen. hyperhuge and let \overline{W} be the $\leq \kappa$ -mantle.
- ▶ By Theorem 1.3 in [Usuba], it is enough to show that, for any ground $W \subseteq \overline{W}$ is actually a $\leq \kappa$ -ground and hence $W = \overline{W}$ holds.
- Let W ⊆ W be a ground. Let μ be the cardinality (in the sense of V) of a p.o. S ∈ W s.t. there is a (W, S)-generic F s.t. V = W[F]. W.l.o.g., μ ≥ κ.
- ▶ By Laver-Woodin Theorem, there is $r \in V$ s.t. $W = \Phi(\cdot, r)^V$ for an $\mathcal{L}_{\varepsilon}$ -formula Φ .
- ▶ Let $\theta \ge \mu$ be s.t. $r \in V_{\theta}$, and for a sufficiently large natural number *n*, we have $V_{\theta}^{\vee} \prec_{\Sigma_n} V$. By the choice of θ , $\Phi(\cdot, r)^{V_{\theta}^{\vee}} = \Phi(\cdot, r)^{\vee} \cap V_{\theta}^{\vee} = W \cap V_{\theta}^{\vee}$ = V_{θ}^{\vee} . Let $\mathbb{Q} \in \mathcal{P}$ s.t. for (V, \mathbb{Q}) -generic \mathbb{H} , there are *j*, $M \subseteq V[\mathbb{H}]$ with $j : V \xrightarrow{\prec}_{\kappa} M$, $\theta < j(\kappa)$, $|\mathbb{Q}| \le j(\kappa)$, $V_{j(\theta)}^{\vee[\mathbb{H}]} \subseteq M$, and \mathbb{H} , $j''j(\theta) \in M$.

... (back and forth with j) ... Thus $V_{\theta}^{W} \subseteq V_{\theta}^{W}$. Since θ can be arbitrary large, It follows that $\overline{W} \subseteq W$.

Proof of Theorem 11.

- Suppose that P ∈ P is s.t. ||-P" BFA< κ(P)" and G is a (V, P)-generic set. Let φ = φ(x) be a Σ₂-formula in L_ε, and φ(x) = ∃y ψ(x, y) for a Π₁-formula ψ in L_ε. Let μ < κ and a ∈ H(μ⁺) (⊆ H(κ)). We have to show that H(μ⁺)^V ⊨ φ(a) ⇔ H((μ⁺)^{V[G]})^{V[G]} ⊨ φ(a).
- Suppose first that H(μ⁺)^V ⊨ φ(a). Let b ∈ H(μ⁺)^V be s.t. H((μ⁺)^V)^V ⊨ ψ(a, b). Since we have V ⊨ BFA_{<κ}(P) by Ikegami-Trang Theorem 10, it follows that H((μ⁺)^{V[G]})^{V[G]} ⊨ ψ(a, b) by Bagaria's Absoluteness Theorem 2, and thus H((μ⁺)^{V[G]})^{V[G]} ⊨ φ(a). Suppose now H((μ⁺)^{V[G]})^{V[G]} ⊨ φ(a). By (P, H(κ))_{Σ_n∪Γ}-RcA⁺, there is a P-ground W of V s.t.

* W \models "BFA_{< µ⁺}(\mathcal{P}) $\land \mathcal{H}(\mu^+) \models \varphi(a)$ ".

Note that the formula in (*) is Σ_n if $n \ge 3$ and Γ if n = 2.

Proof of Theorem 11. (2/2)

Let $b \in \mathcal{H}((\mu^+)^W)^W$ be s.t. $W \models \mathcal{H}(\mu^+) \models \psi(a, b)^n$. By Bagaria's Absoluteness Theorem 2, and since V is a \mathcal{P} -generic extension of W, it follows that $V \models \mathcal{H}(\mu^+) \models \psi(a, b)^n$ and hence $\mathcal{H}(\mu^+)^V \models \varphi(a)$.

For the last statement of the present theorem, let φ be a Σ₂-formula, and a ∈ H(κ). If H(κ) ⊨ φ(a), then, by Lemma A1 below, there is μ < κ s.t. H(μ⁺) ⊨ φ(a). By the first part of the theorem, it follows that H((μ⁺)^{V[G]})^{V[G]} ⊨ φ(a). Thus H((κ⁽⁺⁾)^{V[G]})^{V[G]} ⊨ φ(a) by Lemma A1. If H((κ⁽⁺⁾)^{V[G]})^{V[G]} ⊨ φ(a), then there is μ < κ s.t. H((μ⁺)^{V[G]})^{V[G]} ⊨ φ(a) (this is also shown using Lemma A1). Hence H((μ⁺)^V) ⊨ φ(a) by the first part of the theorem.

(Theorem 11)

A ロ ト 4 間 ト 4 目 ト 4 目 ト 9 Q Q

back

Lemma A1. (Levy) $\mathcal{H}(\kappa) \prec_{\Sigma_1} V$ for any cardinal $\kappa > \aleph_0$.

Proof of Proposition 3

- **Proposition 3.** Suppose that \mathcal{P} is an iterable class of p.o.s and A a set (of parameters). (\mathcal{P}, A) -RcA⁺ is equivalent to MP (\mathcal{P}, A) .
- **Proof.** ► Suppose that (\mathcal{P}, A) -RcA⁺ holds. We show that MP (\mathcal{P}, A) holds. Let $\mathbb{P} \in \mathcal{P}$ be a push of the \mathcal{P} -button $\varphi(\overline{a})$.
- $\vdash \text{ Let } \varphi'(\overline{x}) \text{ be the formula saying } (*) \quad \forall \underline{\mathbb{Q}} (\underline{\mathbb{Q}} \in \mathcal{P} \ \rightarrow \ \|\underline{\mathbb{Q}}^{"} \varphi(\overline{x})".$
- ▷ Then we have ||_P" \varphi'(\vec{a})". By (\mathcal{P}, A)-RcA⁺, there is a \mathcal{P}-ground W of V s.t. \vec{a} ∈ W and W |= \varphi'(\vec{a}) holds.
- \triangleright By the definition (*) of φ' , it follows that $V \models \varphi(\overline{a})$ holds.
- ▶ Now suppose that MP(\mathcal{P}, A) holds, and $\mathbb{P} \in \mathcal{P}$ is s.t. $\Vdash_{\mathbb{P}} " \varphi(\overline{a}) "$ for $\overline{a} \in A$. ▷ Let φ'' be a formula saying:

(**) "there is a \mathcal{P} -ground N s.t. $\overline{x} \in N$ and $N \models \varphi(\overline{x})$ ". ^[9]

Then $\varphi''(\overline{a})$ is a \mathcal{P} -button and \mathbb{P} is its push.

By MP(\mathcal{P} , A), $\varphi''(\overline{a})$ holds in V and hence there is a \mathcal{P} -ground W of V

s.t. $\overline{a} \in W$ and $W \models \varphi(\overline{a})$. This shows (\mathcal{P}, A) -RcA⁺. \square (Proposition 3)

^[9] This is formalizable in the language of ZFC by Laver-Woodin Theorem. See: [9a] Jonas Reitz, The Ground Axiom, JSL, Vol.72, No.4 (2007), 1299–1317.
[9b] Joan Bagaria, Joel David Hamkins, Konstantinos Tsaprounis, Toshimichi Usuba, Superstrong and other large cardinals are never Laver indestructible, AML, Vol.55 (2016), 19–35.

Proof of Theorem 15.

- **Proof.** Suppose that $\underline{\Vdash_{\mathbb{P}}}^{"}\mathcal{H}(\mu^{+}) \models \varphi(\overline{a})^{"}$ for $\mathbb{P} \in \mathcal{P}$ with $\underline{\Vdash_{\mathbb{P}}}^{"}\mathsf{BFA}_{<\kappa}(\mathcal{P})^{"}$, $\mu < \kappa$, Σ_{2} -formula φ and for $\overline{a} \in \mathcal{H}(\mu^{+})$.
- ▶ Let \mathbb{G} be a (V, \mathbb{P})-generic set. Then we have

(1) $\mathsf{V}[\mathbb{G}] \models "\mathsf{BFA}_{<\kappa}(\mathcal{P}) \land \mathcal{H}(\mu^+) \models \varphi(\overline{a})".$

- ► Let $\varphi = \exists y \psi(\overline{x}, y)$ where ψ is a Π_1 -formula in $\mathcal{L}_{\varepsilon}$. Let $b \in \mathcal{H}((\mu^+)^{V[\mathbb{G}]})^{V[\mathbb{G}]}$. be s.t. $\mathcal{H}((\mu^+)^{V[\mathbb{G}]})^{V[\mathbb{G}]} \models \psi(\overline{a}, b)$.
- ► Since κ is tightly \mathcal{P} -Laver-gen. huge, there is a \mathbb{P} -name \mathbb{Q} with $\Vdash_{\mathbb{P}}^{\circ} \mathbb{Q} \in \mathcal{P}^{\circ}$ s.t., for $(\mathsf{V}, \mathbb{P} * \mathbb{Q})$ -generic \mathbb{H} with

(2) $\mathbb{G} \subseteq \mathbb{H}$ (under the identification $\mathbb{P} \leq \mathbb{P} * \mathbb{Q}$),

```
there are j, M \subseteq V[\mathbb{H}] s.t. j : V \xrightarrow{\prec}_{\kappa} M,
```

- (3) $|\mathbb{P} * \mathbb{Q}| \leq j(\kappa)$ (by tightness),
- (4) $\mathbb{P}, \mathbb{P} * \mathbb{Q}, \mathbb{H} \in M$ and
- (5) $j''j(\kappa) \in M$.

By (1), (2) and Bagaria's Absoluteness Theorem 2 (applied to $V[\mathbb{G}]$), we have $V[\mathbb{H}] \models "\psi(\bar{a}, b)"$ and hence $V[\mathbb{H}] \models "\mathcal{H}(\mu^+) \models \psi(\bar{a}, b)"$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

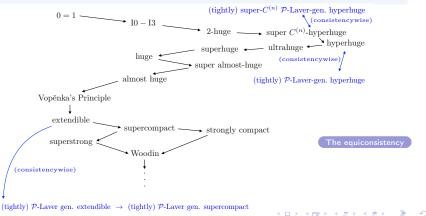
Proof of Theorem 15. (2/2)

- ▶ By (3), (4) and (5), there is a \mathbb{P} -name of *b* in *M*. By (4), it follows that $b \in M$. By similar argument, we have $\mathcal{H}((\mu^+)^{V[\mathbb{H}]})^{V[\mathbb{H}]} \subseteq M$ and hence $\mathcal{H}((\mu^+)^{V[\mathbb{H}]})^{V[\mathbb{H}]} = \mathcal{H}((\mu^+)^M)^M \in M$. Thus we have $M \models \mathcal{H}(\mu^+) \models \psi(\overline{a}, b)^{\mathcal{H}}$.
- ▶ By elementarity, it follows that $V \models \mathcal{H}(\mu^+) \models \exists y \psi(\overline{a}, y)$, and hence $V \models \mathcal{H}(\mu^+) \models \varphi(\overline{a})$ as desired.
- $$\begin{split} & \succ \text{ Suppose now that } \mathbb{P}, \ \mu, \ \varphi, \ \overline{a} \text{ are as above and assume that} \\ & \vee \models ``\mathcal{H}(\mu^+) \models \varphi(\overline{a}) `` \text{ holds. For } \Pi_1 \text{-formula } \psi \text{ as above let} \\ & b \in \mathcal{H}(\mu^+)^{\vee} \text{ be s.t. } V \models ``\mathcal{H}(\mu^+) \models \psi(\overline{a}, b) ``. \\ & \text{Since } V \models \text{BFA}_{<\kappa}(\mathcal{P}) \text{ by assumption, it follows that} \\ & \vee[\mathbb{G}] \models \psi(\overline{a}, b) \text{ by Bagaria's Absoluteness Theorem 2, and hence} \\ & \vee[\mathbb{G}] \models \varphi(\overline{a}). \end{split}$$
 - The last assertion of the theorem follows by the same argument as that given at the end of the proof of Theorem 11. \Box (Theorem 15.)

back

Additional slide 2: Identity crisis (or a resolution thereof)

- I am working on the following conjecture (suggested by G. Goldberg):
- **Proposition.** A model with a/the tightly \mathcal{P} -Laver generically extendible cardinal can be obtained starting from a model with an extendible cardinal.
- **Conjecture.** A model with a/the tightly super- $C^{(\infty)}$ \mathcal{P} -Laver generically ultrahuge cardinal can be obtained starting from a model with a super- $C^{(\infty)}$ extendible cardinal, and this cardinal has relatively low consistency strength.



Additional slide 1: Identity crisis (or a resolution thereof)

- For many combination of P, A, and Γ the exact consistency strength of MP(P, A)_Γ is known: they are usually quite low and compatible with V = L.
- ▷ For example for $\mathcal{P} = \text{ccc p.o.s, proper p.o.s, or semi-proper p.o.s,}$ MP $(\mathcal{P}, \mathcal{H}(2^{\aleph_0}))$ is known to be compatible with V = L.
- ▷ An exception is when \mathcal{P} = stationary preserving p.o.s. The known lower bound of MP($\mathcal{P}, \mathcal{H}(2^{\aleph_0})$) implies e.g. much nore than $0^{\#}$ exists.
- On the other hand,

Theroem 34. MM^{++} (or even MM^{++} with class many, stationarily many etc. supercompact cardinals) does not imply any of $MP(\mathcal{P}, \emptyset)$ for any non-trivial \mathcal{P} .