Shelah's Singular Compactness Theorem and its variants

Sakaé Fuchino (渕野 昌) Graduate School of System Informatics Kobe University (神戸大学大学院 システム情報学研究科) http://fuchino.ddo.jp/index-j.html

BARCELONA SET THEORY SEMINAR

(2016年12月29日 (05:39 CEST) version)

2016 年 10 月 21 日 (於 University of Barcelona)

This presentation is typeset by pLTEX with beamer class. These slides are downloadable as http://fuchino.ddo.jp/slides/UB-seminar2016-10-21.pdf

Shelah's Singular Compactness Theorem

- Shelah's Singular Compactness Theorem (SCT) states, roughly speaking, that for a class of structures *F*, if *A* ∈ *F* of singular cardinal is "almost free" then *A* is free.
- ► Some instances of the SCT: The following statements are theorems in ZFC:
- (1) For an abelian group A of singular cardinality, if all subgroups of A of cardinality strictly less than |A| are free, then A is free.
- (2) For a graph E of singular cardinality, if all subgraphs of E of cardinality strictly less than |E| are of countable coloring number, then E also has the countable coloring number.

Shelah's Singular Compactness Theorem (2/2) Singular Compactness Theorem (3/6)

- ► SCT for non-hereditary notions of "freeness": The following statements are theorems in ZFC:
- (3) For a Boolean algebra B of singular cardinality λ , if there are cofinally many $\kappa < \lambda$ s.t.

$$\{C \leq B \, : \, | \, C \, | = \kappa^+, \ C \text{ is free} \}$$

contains a club $\subseteq [B]^{\kappa^+}$, then B is free.

(4) For a pre-Hilbert space X (over ℝ or ℂ) which is a dense subspace of ℓ₂(λ) for a singular λ, if there are cofinally many κ < λ s.t.</p>

 $\{u \in [\lambda]^{\kappa^+} : X \downarrow u \text{ is a non-pathological pre-Hilbert space}\}$

contains a club in $[\lambda]^{\kappa^+}$, <u>then</u> X is <u>non-pathological</u>.

Applications

► (2) and (4) are used as a part of the proof of the following equivalence theorem:

Theorem. The following are equivalent:

(a) $\underbrace{\mathsf{FRP}}_{\mathsf{FRP}}$;

(b) A graph *E* is of countable coloring number if and only if all subgraph of *E* of cardinality $\leq \aleph_1$ are of countable coloring number.

(c) For any pre-Hilbert space X which is a dense subspace of $\ell_2(\kappa)$ for some cardinal $\kappa > \omega$, X is pathological if and only if $\{u \in [\kappa]^{\aleph_1} : X \downarrow u \text{ is pathological}\}$ is stationary in $[\kappa]^{\aleph_1}$.

Reflection of maximal chromatic number

Theorem. (Ottenbreit-Sakai/Foreman-Laver) The combination of the following assertions $(\alpha) + (\beta)$ is is consistent (modulo a huge cardinal):

(α) For any graph *E* of cardinality \aleph_3 , if *E* is of maximal chromatic number (i.e. if chr(E) = |E|) then there is a subgraph *E'* of *E* of cardinality \aleph_1 with maximal chromatic number.

(β) There is a graph F of cardinality \aleph_2 of maximal chromatic number s.t. all subgraphs of F of cardinality \aleph_1 are countable chromatic.

Problem. Does SCT holds for maximal chormatic number?

Trivia: Reflection of non-maximal chromatic number Singular Compactness Theorem (6/6)

Fact. The following holds in ZFC:

For any graph *E* of cardinality \aleph_2 with non-maximal chromatic number (i.e. chr(E) < |E|) there is a subgraph *E'* of *E* of cardinality \aleph_1 with non-maximal chromatic number.

In the following "stationarily many" means in the sense of Woodin:

Proposition. (H. Sakai) The following are equialent:

(a) For any graph E of cardinality \aleph_2 with non-maximal chromatic number there are stationarily many subgraphs E' of E of cardinality \aleph_1 with non-maximal chromatic number;

(b) Chang's Conjecture.

Problem. Does SCT holds for non-maximal chormatic number?

Thank you for your attention.

Coloring number of a graph

A graph E = ⟨E, K⟩ has coloring number ≤ κ ∈ Card if there is a well-ordering ⊑ on E s.t. for all p ∈ E the set

 $\{q \in E : q \sqsubseteq p \text{ and } q K p\}$

has cardinality $< \kappa$.

The coloring number col(E) of a graph E is the minimal cardinal among such κ as above.

Pathological pre-Hilbert spaces

- A pre-Hilbert space (inner-product space) X over K (= ℝ or ℂ) is said to be pathological if there is no orthonormal basis of of X over K.
- ▶ For an infinite set *S*,

 $\ell_2(S) = \{\mathbf{u} \in {}^{S}\mathcal{K} : \sum_{x \in S} (\mathbf{u}(x))^2 < \infty\},\$

where $\sum_{x \in S} (\mathbf{u}(x))^2$ is defined as $\sup\{\sum_{x \in A} (\mathbf{u}(x))^2 : A \in [S]^{<\aleph_0}\}$. $\ell_2(S)$ with with coordinatewise addition and scalar multiplication, as well as the inner product defined by

 $(\mathbf{u},\mathbf{v}) = \sum_{x \in S} \mathbf{u}(x) \overline{\mathbf{v}(x)}$ for $\mathbf{u}, \mathbf{v} \in \ell_2(S)$.

is a/the Hilbert space of density |S|.

▶ For $X \subseteq \ell_2(S)$ and $u \subseteq S$, $X \downarrow u = \{\mathbf{u} \in X : \operatorname{supp}(\mathbf{u}) \subseteq u\}$.

FRP

(FRP) For any regular $\kappa > \omega_1$, any stationary $S \subseteq E_{\kappa}^{\omega}$ and any mapping $g: S \to [\kappa]^{\aleph_0}$, there is $\alpha^* \in E_{\kappa}^{\omega_1}$ s.t. (*) α^* is closed w.r.t. g (that is, $g(\alpha) \subseteq \alpha^*$ for all $\alpha \in S \cap \alpha^*$) and, for any $I \in [\alpha^*]^{\aleph_1}$ closed w.r.t. g, closed in α^* w.r.t. the order topology and with $\sup(I) = \alpha^*$, if $\langle I_{\alpha} : \alpha < \omega_1 \rangle$ is a filtration of I then $\sup(I_{\alpha}) \in S$ and $g(\sup(I_{\alpha})) \cap \sup(I_{\alpha}) \subseteq I_{\alpha}$ hold for stationarily many $\alpha < \omega_1$