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Generically supercompact cardinals Gen, superompact cadias (3/18)

» For a family P of p.o.s, a cardinal « is said to be generically
supercompact by P :< for any A > k, there is a p.o. P € P with
(V,P)-generic G, and classes j, M C V[G] s.t.

(1) j:V3MCV[G]

(2) crit(j) =k, j(k) > X; and

(3) j"xeM.

» We call j as above a \-generically supercompact embedding for .

Fact 1. Suppose that « is a (really) supercompact cardinal, 1 < & a
regular uncountable cardinal, and Py = Col(y, k).
Then, for a (V,Py)-generic Go,

V[Go] E* T is a generically supercompact cardinal for
< p~closed p.o.s”.
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Fact 1. Suppose that « is a (really) supercompact cardinal, u < x a
regular uncountable cardinal, and Py = Col(y, k).
Then, for a (V, Pg)-generic Go,

V[Go] = u™ is a generically supercompact cardinal for
< p~closed p.o.s”.

Proof. » Note that V[Go] E“ ™ = &”.
> For A\>k, letj:V =5 M be a A-supercompact embedding for «.

Then we have by closedness of M
=~
j(Po) = Col( p, j(x)™ = Col(p,j(r))".
~— —~—
by elementarity =j(w)

» For a (V[Go], Col(, j(r) \ k))-generic filter G, the lifting
7 V[Go] =5 M[Go][G]; a% 5 j(a2)®0*C witnesses the generic

——
C V[Go][G]

A-supercompactness of x by u-closed p.o.s in V[Gg].
p p y 1 P [Go] (Fact 1)

~—
(pt)Vicol
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» The generic supercompactness by < p-closed p.o.s is first-order
formalizable:

Theorem 2. For regular uncountable x and u,

k is generically supercompact by < u-closed p.o.s
& for any A > k, there is a < u-closed p.o. P s.t.

|Fp there is a V-normal ultrafilter on PV(PN(A)V)”-

to the proof of Theorem 7

> The proof of Theorem 2 is done by imitating the proof of
Solovay-Reinhardt characterization of supercompactness in terms of
existence of normal filters.
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Theorem 2. For regular uncountable s and u,

K is generically supercompact by < u-closed p.o.s
& for any A > K, there is a < u-closed p.o. P s.t.

|-p* there is a V-normal ultrafilter on PV(P.(\)V)”.

Proof. (=):
> Let A >k and let P be a < pi~closed p.o. with (V,P)-generic G and

classes j, M C V[G] s.t. j: V S Misa A-generically supercompact
embedding for .

> In particular, j”\ € M.
> In V[G], let

U:={AcV :ACP.\Y, "€ j(A)}

> U, is a V-normal ultrafilter on PV (P, (\)Y).
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Theorem 2. For regular uncountable s and u,

K is generically supercompact by < u-closed p.o.s
& for any A > K, there is a < u-closed p.o. P s.t.

|-p* there is a V-normal ultrafilter on PV(P.(\)V)”.

» Let A > x and let P be a < pi-closed p.o. with (V,P)-generic G and
V-normal ultrafilter U € V[G] on PV (P.(\)V).
> W ={fcV::f: P\ =V}
> Forf,geW, f~y g {xeP.(\) : f(x)=g(x)} € U;
fey g {xeP.(\)V : f(x)egx)}eU.
» ~y is a congruence relation to €.
We write f/ ~y €y g/ ~u & f €y €, closedness of P is needed here!

Proof. («):

Claim. €y is an extensional, well-founded and set-like rel. on W/ ~.

» Let M be a Mostowski-collapse of (W/ ~, €y). Let j be the
mapping which corresponds to the mapping : V — W/ ~y;
aw const,/ ~y. Then j: V S Misa A-generically supercompact
embedding for k. [[] (Theorem 2)
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Some more details of the proof:

> Let A >k and let P be a < p-closed p.o. with (V,P)-generic G and
V-normal ultrafilter U € V[G] on PV(P.(\)V).

> Wi={fecV:f: P\ =V}
> Forf,geW, f~y g {xeP.(\) : f(x)=g(x)} € U;
fey g {xeP.(\)V : f(x)egx)}eU.
» ~y is a congruence relation to €.
We write f/ ~y €U g/ ~y e ey g

Claim. €y is an extensional, well-founded and set-like rel. on W/ ~.

I To show the well-foundedness, suppose for contradiction that
there is a sequence (f, : n € w) in W, s.t. foy1 €y f, forall n € w.
> A, = {x P\ : fori(x) € f(n)}.
» Since P does not add any new w-sequence, (f, : n € w) € V. Thus
Mpew An € U (Lemma Al). For x € N, ., An € U, we have
A(x) 2 R(x)2f(s)2--. K - —
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Problem. Can generic supercompactness by a class P adding new
w-sequences first-order definable?

Is there any “nice” first-order definable property which can replace
the generic supercompactness by P?

The assertion
“V is a generic extension of an inner model by adding
supercompact many Cohen reals”

for example, is first-order formalizable and implies the generic

supercompactness by c.c.c. p.o.s. However, this statement is too
artificial to be considered as a “nice” set-theoretic principle.



Some Cardinal arithmetic Gen. suprcompctcardns (10,18)

Lemma 3. Suppose that « is a gen. supercompact cardinal by < -
closed forcing. Then we have 2<# < k.

In particular, if K = u™ and & is gen. supercompact by < p-closed
forcing, then we have 2<# = (.

Proof. Suppose otherwise and let A\ = 2<# > k.
» Let P be a < p-closed p.o. with a (V,P)-generic G and j, M € V[G]
st. V[Gl £ j: V3 M, crit(j) = k, j(A) > j(x) > A, and
(*)j"\ e M.
» We have P, (1)Y C Pu()V C Pp(1)VIEL.
Vop,

> Since P is p-closed, P, (1) (1)VICL Thus, P,(1)V = Pu(p)

and
ME X = [PV = [Pu()” | = | Pigy G | = J(N).
the bijection showing this is in M because of (*) by elementarity

H (Lemma 3.)
to the proof of Theorem 7
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» For a set Aand A C »> A, we consider the following game G"A(A)
for players | and Il
| ‘ ag ai an e 35 e
| b by by .- B - (€<n)
where a¢, be € A for & < p.
> Il wins this match if
(ag,be : € <m)y e Aand (ag, be : £ <n) " (ay) & A for some
1< p;or (ag, be - & < p) € [A]
where [A] :={f €A : f | e Aforall £ < u}.

» For regular cardinals p, £ with w < p < k&,
The Game Reflection Principle for < i1 and < k is the assertion:

GRP<#(< k): For any set A of regular cardinality > x and p-club
C C [A]<", if the player Il has no winning strategy in G"“A(A) for
some A C #2A, there is B € C s.t. the player Il has no winning
strategy in G""B(AN#>B).
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GRP<#(<k): For any set A of regular cardinality > x and u-club
C C [A]<", if the player Il has no winning strategy in Q‘DA(A) for
some A C #”A, there is B € C s.t. the player Il has no winning
strategy in G"*“B(AN+>B).

Lemma 4. For any uncountable regular cardinals ug p, £ with pg <
p < k, GRP<H(< k) implies GRP<#°(< k). [

» The “Strong Game Reflection Principle” Bernhard Konig introduced
in his 2004 paper [Kénig] is GRP<“1(< N;) in our terminology.
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Proposition 5. (Lemma 4.11 in [1]) For a regular uncountable y and
k = pt, if Kk is gen. supercompact by < pu-closed forcing, then
GRP<#(< k) holds.

Proof. Suppose that A > x, A C #~ A, and the set
{Se€Pu(\) : llhasaws. in G“ S(ANH>S)} contains a p-club C.

» We want to show that Il has a w.s. in G“”*(A).

» Let P be a < p-closed p.o. with (V,P)-gen. G s.t. there are j,

M C V[G] with j : VS5 M, crit(j) = &, j(k) > A, and (¥) j”\ € M.

» In M, we have j”X € j(C). Thus, the player Il has a w.s. in

gll.>j/l)\(j(A) ) “>j”A).

» By the closedness (*) of M, M also thinks that Il has a w.s. in

gu>)\(A) ~ gﬂ>j”>\(j(A) N [L>j//)\).

» Again by the closedness (*) Il has a w.s. in G"~*(A) in V[G].

» Since P is < y-closed, it follows that Il has a w.s. in G~ *(A) in V.

to the proof of Theorem 7 IiJ (Proposition 5)
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Theorem 7. ([Konig], [I]) For a regular uncountable cardinal p and
=
,U’ '
Kk is gen. supercompact by < p-closed p.o.s. <

2<# = 1 and GRP<#(< k).

The condition 2<# = 1 follows from GRP<#(< k) if p = ws:
Theorem 8. ([Kénig], [1]) GRP<“!(< k) implies 2% < &. )|

Proof of Theorem 7: “=" follows from Lemma 3 and Proposition 5.

The proof for “<" is too involved to be presented here.

» A very rough idea of “<™:
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Theorem 7. ([Konig], [1]) For a regular uncountable cardinal px and
K=put,
K is gen. supercompact by < p-closed p.o.s. <
2<# =y and GRP=#(< k).
Proof. A very rough idea of “<":
By Theorem 2, it is enough to show that for each \ > «x there is a
< p~closed p.o. IP s.t. IP forces a V-normal ultrafilter.

> We design a game in which the player Il tries to obtain the set
{be : & < p} which encodes a filter basis while the player |
challenges by presenting a regressive function a; and demands that
player Il should choose the move b: which should witness the
V-normality for this regressive function.

> We prove that the player Il has a w.s. in the game under
GRP<#(< k) (2<# = i is necessary for this proof), and that in the
generic extension with < pu-closed forcing collapsing enough
cardinals, the player | can enumerate all the regressive functions and
a wined game for Il creates a V-normal filter. (Theorem 7)
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Theorem 8. ([Konig], [I]) For a regular cardinal x > Ry,
GRP<“1(< k) implies the Rado Conjecture RC(< ) with reflec-
tion point < k. [

Theorem 9. ([I1]) Suppose that « is a regular uncountable cardinal
s.t. uR0 < k for all u < & holds. Then GRP<“1(< k) implies the

Downward Léwenheim-Skolem Theorem SDLS,(£o%! < k) for

stat »
stationary logic with reflection point < k. Isj
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Game Reflection Principle (GRP<“! (< Ry))
& ws is generically supercompact

by o-closed forcing MM +er
—

[ I ] Theorem 4.7, w
\ Lemma 4.1 and Lemma 4.2 PFA:E 5 \

Ro,IT
SDLS (Lo <o) MA* (o-closed) MM

B.Kenig & DRP (ICy,) + CH
[ I ] Lemma 2.1,(1) and [ I ] Lemma 2.1,(2) \
Lemma 3.5,(2) and Lemma 3.5, (1)

MAT* (o-closed)

SDLS (L%, <Rs) ¢ DRP (ICy,)
Rado Conjecture RC(< R,)) / /

RPic,,
Ph.Doebler

Axiom R < RPy,,

/\ e

Semi-stationary Reflection (SSR) Fodor-type Reflection Principle (FRP)

Doebler-Scindler

A strong version of Changs Conjecture



Moltes gracies per la seva atencio!

ClBnNNL I CEVELL.

Thank you for your attention!
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The logic £Y0:!! is the monadic second-order logic with second-order
variables X, Y, Z etc. which are interpreted as countable sets of
the underlying set of the structure. second order quantifiers 3 (and
its dual V) are allowed.

The logic has a built-in relation symbol & which connects first and
second order variables as “x ¢ X with the obvious interpretation.
£20:11is an extension of £}/ in which a new second order
quantifier “stat” is also allowed with the interpretation

A ): statho(ao, oy @m—1, Bo, ..., Bn_l,X) =

{B S [ |Ql| ]NO s A ): gp(ao, veevdm-1,Bo, ..., Bn_1, B)}
is stationary.

SDLS, (£ < k): For any structure 2 (with a countable signature),
there are stationarily may M € [|2A] |[<" s.t. A [ M < xon 2.

stat
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Proposition A6. (M. Magidor) SDLS, (£3%! < Ry) implies Fodor-
Type Reflection Principle.

Proposition A7. ([1]) SDLS, (£ < k) implies 2% < k.

Theorem A8. ([1]) SDLS+(£§&’1’, < k) is equivalent to 2% < k +
Diagonal Reflection Principle of S.Cox for internally club sets down
to <k.



Rado Conjecture (1/2)
> Atree T = (T,<7) is special if T is a countable union of pairwise

incomparable sets (anti-chains) T = J,.,, An

» For a cardinal x, Rado Conjecture with reflectlon point <k is the
principle:

RC(< k) : For any non-special tree T there is a subtree T/ C T of size
<k s.t. T' is non-special.

> The classical Rado Conjecture RC is the principle RC(<X5).



Rado Conjecture (2/2)
> The classical Rado Conjecture RC is the principle RC(<X5).

Theorem A3. (Ph. Doebler) RC implies Semi-Stationary Reflection

(which implies in turn a strong version of Chang's Conjecture). [

Theorem A4. (S.F., H.Sakai, V.Torres-Perez, T.Usuba) RC implies
Fodor-type Reflection Principle (and this principle is known to be
equivalent to may “mathematical” reflection statements).

[th




p-club family of [A]<"

» For a regular cardinals ;4 < k and a set A,
C C [A]<"is p~club :&

C is cofinal in [A]<" w.r.t. C, and we have | J,_, ¢, € C for
any C-increasing sequence (¢, € C : a < v) in C with
w<cf(v) < k.

Lemma A2. For regular pg, 1 with po < p, if C C [A]<* is po-club,
then C is p-club. (O



V-normal ultrafilter
» Suppose that we are living in a universe W and V is an inner model.
> InW, UC PY(P.(\)V) is a V-normal ultrafilter
<~
® P& U;Forany A, A cU AnA cU;IfAcU,
AC A CP.(N)Y, then A’ € U; for any A € PV(P.(\)V), either
Ac UorP.,(\NV\AcU;and
@ Forany xg € P.(\)V, {x € P.(\)V : x0 C x} € U;

® Forany (Ac : £€ ) €V, if {Ac : £ <A} C U, then
AgerAs = {x € P,(A\)V : x € Ac forall £ € x} € U.

Lemma Al. For V-normal U and (A, : n€ w) € V with A, € U
for all n € w, we have (., An € U

ncw

Proof. Let A¢ := P,(\)V for all £ € A\ w. Then
U3 DeerAe N {x € PY(P.(A)Y) : wC x} CNpew An-

Back to the proof of Claim @ (Lemma Al)



