

Generic Laver diamonds at the continuum

Sakaé Fuchino (渕野 昌)

Kobe University, Japan

<https://fuchino.ddo.jp/index.html>

(2025 年 12 月 16 日 (07:06 JST) printer version)

2025 年 11 月 12 日 (15:30 ~ 17:00 JST) : **Kobe Set Theory Seminar**

► 2025 年 12 月 16 日 (10:45 ~ 11:15 JST) : **RIMS set theory workshop 2025**

The following slides are typeset using **up^LATE_X** with beamer class, and
presented on GoodReader v.5.19.1211

The most up-to-date file of these slides (in printer friendly version) is
downloadable as

<https://fuchino.ddo.jp/slides/gen-Laver-diamonds-at-continuum-slides-pf.pdf>

[0] This is an ongoing joint work with Francesco Parente.

Proposition 1. MA + “ $\aleph_1 < 2^{\aleph_0}$ is a successor cardinal” implies $\diamondsuit_{2^{\aleph_0}}$.

Proof. Trivial modulo a theorem by Shelah.

□ (Proposition 1)

Theorem 2. (Shelah, [1]) If $\lambda = \chi^+ = 2^\chi > \aleph_1$ then \diamondsuit_λ holds.

中

Theorem 3. (Martin-Solovay) MA implies that $2^\kappa = 2^{\aleph_0}$ for all $\aleph_0 \leq \kappa < 2^{\aleph_0}$.

A sketch of Proof. ► For $\kappa < 2^{\aleph_0}$, let $\{a_\alpha : \alpha < \kappa\}$ be an almost disjoint family of elements of $[\omega]^{\aleph_0}$.

- For $A \subseteq \kappa$, show that, under MA, that there is $a \subseteq \omega$, s.t.

$$A = \{\alpha \in \kappa : |a \cap a_\alpha| = \aleph_0\}.$$

□ (Theorem 3)

Corollary 4 (to Theorem 3). MA implies that the continuum is regular.

Corollary 5 (to Proposition 1). PFA implies $\diamond_{2^{\aleph_0}}$.

2

^[1] Saharon Shelah, Diamonds, Proc. of the AMS, Vol.138, No.6, (2010), 2151–2161.
See also [A. Rinot's note](#).

- ▶ Does MA imply $\Diamond_{2^{\aleph_0}}$ when 2^{\aleph_0} is a limit cardinal?
- ▶ Note that, by Corollary 4, MA + “ 2^{\aleph_0} is a limit cardinal” implies that 2^{\aleph_0} is weakly inaccessible.

Proposition 6. (modulo some large cardinal)

MA + “ 2^{\aleph_0} is a limit cardinal” + $\neg\Diamond_{2^{\aleph_0}}$ is consistent.

A sketch of Proof. ▶ It is known that under consistency of some large cardinal, $\neg\Diamond_\kappa$ for an inaccessible cardinal κ is consistent. Actually it is also known that $\neg\Diamond_\kappa$ for a Mahlo κ is consistent (H. Woodin).

- ▶ Starting with such κ , force MA + $\kappa = 2^{\aleph_0}$ by the standard ccc p.o.. Then $\neg\Diamond_\kappa$ is preserved.

(Proposition 6)

- ▶ Suppose that κ is an uncountable regular cardinal.
- ▷ (Reminder) \diamondsuit_κ is the assertion that there is a sequence
(\diamondsuit_κ -sequence) $\langle a_\alpha : \alpha \in \kappa \rangle$, s.t. $a_\alpha \subseteq \alpha$ for all $\alpha < \kappa$, and for any $X \subseteq \kappa$, $\{\alpha \in \kappa : X \cap \alpha = a_\alpha\}$ is stationary in κ .
- ▶ Laver diamond (also called Laver function) at κ for a notion LC of large cardinal is a mapping $f : \kappa \rightarrow V_\kappa$ s.t. for any set a , and $\lambda > \kappa$ there is an elementary embedding $j : V \xrightarrow{\sim} M$, $j(\kappa) > \lambda$ for some inner model $M \subseteq V$ with the closure property corresponding to LC s.t. $j(f)(\kappa) = a$.
- ▷ Laver diamond exists for most of large large cardinals (for supercompact, extendible, hyperhuge, etc).

- The notion of Laver diamond works only for a very large large cardinal κ .
- If $f : \kappa \rightarrow V_\kappa$ is a Laver diamond at κ (for any notion of large cardinal) then $\langle a_\alpha : \alpha < \kappa \rangle$ defined by

$$a_\alpha := \begin{cases} f(\alpha); & \text{if } f(\alpha) \subseteq \alpha; \\ \emptyset; & \text{otherwise.} \end{cases}$$

is a \diamondsuit_κ -sequence (see a similar argument in the proof of Lemma 8).

- Cf.:

Theorem 7. (Kunen, see A. Kanamori [2]) If κ is subtle then \diamondsuit_κ holds. \square

[2] Akihiro Kanamori, Diamonds, large cardinals, and ultrafilters, Contemporary Mathematics, Vol.69 (1988).

- ▶ Suppose that \mathcal{P} is a class of (two-step) iterable p.o.s, and LC a notion of large cardinal.
- ▶ For an uncountable regular cardinal κ , the generic Laver Diamond Principle $\diamond_{\text{Laver}, \kappa}^{\mathcal{P}, \text{LC}}$ is the assertion of the existence of $\diamond_{\text{Laver}, \kappa}^{\mathcal{P}, \text{LC}}$ -sequence $f : \kappa \rightarrow V_\kappa$:
 $(*)$ for any set a , and $\lambda > \kappa$, there is $\mathbb{P} \in \mathcal{P}$ with (V, \mathbb{P}) -generic \mathbb{G} s.t. there are $j, M \subseteq V[\mathbb{G}]$ with $j : V \xrightarrow{\text{embed}} M$, $j(\kappa) > \lambda$, j satisfying the closure property corresponding to LC , and $\underline{j(f)(\kappa)} = a$.

- ▶ Laver diamond at κ is simply a $\diamond_{\text{Laver}, \kappa}^{\{\{1\}\}, \text{LC}}$ -sequence (for any notion LC of large cardinal).
- ▶ A similar generic version of Laver diamond has been studied by Matteo Viale and Sean Cox but mainly in connection with MM and its fragments.

Lemma 8. $\diamondsuit_{Laver, \kappa}^{\mathcal{P}, LC}$ implies \diamondsuit_κ .

Proof. Suppose that $f : \kappa \rightarrow V_\kappa$ is a $\diamondsuit_{Laver, \kappa}^{\mathcal{P}, LC}$ -sequence.

► Suppose $X \subseteq \kappa$ ($X \in V$). Then there are $\mathbb{P} \in \mathcal{P}$, \mathbb{G} , j , M as in the definition of $\diamondsuit_{Laver, \kappa}^{\mathcal{P}, LC}$ -sequence, s.t. $M \models j(f)(\kappa) = X$.

► Then $j(\{\alpha < \kappa : f(\alpha) = X \cap \alpha\}) \ni \kappa$ since $j(X) \cap \kappa = X$.

It follows that $V \models \{\alpha < \kappa : f(\alpha) = X \cap \alpha\}$ is stationary in κ .

► Thus, letting $a_\alpha := \begin{cases} f(\alpha), & \text{if } f(\alpha) \subseteq \alpha; \\ \emptyset, & \text{otherwise.} \end{cases}$

$\langle a_\alpha : \alpha < \kappa \rangle$ is a \diamondsuit_κ -sequence.

(Lemma 8)

► The same proof actually shows that $\diamondsuit_{Laver, \kappa}^{\mathcal{P}, LC}$ implies $\diamondsuit_\kappa(S)$ for $S := \{\alpha < \kappa : \text{cf}(\alpha) \geq \mu\}$ for all $\omega \leq \mu < \kappa$.

Proposition 9. Suppose that \mathcal{P} is a Σ_2 transfinitely iterable class of p.o.s containing a p.o. which provably adds a new real. If κ is an extendible cardinal, then there is a $\mathbb{P}_\kappa \in \mathcal{P}$ s.t.

$\Vdash_{\mathbb{P}_\kappa} "2^{\aleph_0} = \kappa, \mathcal{P}\text{-LgLCA for extendible, and } \diamondsuit_{\text{Laver}, 2^{\aleph_0}}^{\mathcal{P}, \text{extendible}} \text{ holds}"$.

A sketch of Proof. ▶ Let κ be extendible, and $f : \kappa \rightarrow V_\kappa$ a Laver diamond for extendible at κ .

▷ Let $\vec{P} := \langle \mathbb{P}_\alpha, \mathbb{Q}_\beta : \alpha \leq \kappa, \beta < \kappa \rangle$ be an iteration in $\mathcal{P} \cap V_\kappa$ with the support suitable for \mathcal{P} s.t. for $\beta < \kappa$:

$$\mathbb{Q}_\beta := \begin{cases} \mathbb{R}_\beta, & \text{if } f(\beta) = \langle \mathbb{R}_\beta, \dot{a}_\beta \rangle \text{ where } \mathbb{R}_\beta, \dot{a}_\beta \text{ are } \mathbb{P}_\beta\text{-names and} \\ & \quad \Vdash_{\mathbb{P}_\beta} "\mathbb{R}_\beta \in \mathcal{P}"; \\ \mathbb{P}_\beta\text{-name of the trivial forcing,} & \text{otherwise.} \end{cases}$$

Claim 9.1 \mathbb{P}_κ is as desired.

\vdash (a): $\Vdash_{\mathbb{P}_\kappa} \text{“}\mathcal{P}\text{-LgLCA for extendible”}$: See e.g. [here](#) [3].

(b): $\Vdash_{\mathbb{P}_\kappa} \text{“}\diamondsuit_{\text{Laver}, \kappa}^{\mathcal{P}, \text{extendible}}$ ”:

► Let \mathring{g} be a \mathbb{P}_κ -name s.t. $\Vdash_{\mathbb{P}_\kappa} \text{“}\mathring{g} : \kappa \rightarrow V_\kappa$ ” and

If $f(\alpha) = \langle \mathbb{R}_\alpha, \mathring{a}_\alpha \rangle$ where \mathbb{R}_α and \mathring{a}_α are \mathbb{P}_α -names, then

$\Vdash_{\mathbb{P}_\kappa} \text{“}\mathring{g}(\alpha) = \mathring{a}_\alpha^*$ ” where \mathring{a}_α^* is a \mathbb{P}_κ -name corresponding to the \mathbb{P}_α -name \mathring{a}_α .

► Then we have $\Vdash_{\mathbb{P}_\kappa} \text{“}\mathring{g}$ is a $\diamondsuit_{\text{Laver}, \kappa}^{\mathcal{P}, \text{extendible}}$ -sequence”.

⊣

□ (Proposition 9)

^[3] S.F., Extendible cardinals, and Laver-generic large cardinal axioms for extendibility, extended version of the article with the same title in RIMS Kôkyûroku No.2315 (2025), 62-82, preprint.

Proposition 9. Suppose that \mathcal{P} is a Σ_2 transfinitely iterable class of p.o.s containing a p.o. which provably adds a new real. If κ is an extendible cardinal, then there is a $\mathbb{P} \in \mathcal{P}$ s.t.

$\Vdash_{\mathbb{P}_\kappa} "2^{\aleph_0} = \kappa, \mathcal{P}\text{-LgLCA for extendible, and } \diamondsuit_{\text{Laver}, 2^{\aleph_0}}^{\mathcal{P}, \text{extendible}} \text{ holds}"$.

- ▶ The restriction “ Σ_2 ” on the class of p.o.s \mathcal{P} can be replaced by “ Σ_n ” ($n > 2$) if we start from a $C^{(n')}$ -extendible κ for a large enough $n' \in \mathbb{N}$. More
- ▷ For any $n \in \mathbb{N}$ if n' is large enough relative to n , then starting from an $C^{(n')}$ -extendible κ , the same construction proves

“ $\Vdash_{\mathbb{P}_\kappa} "2^{\aleph_0} = \kappa, \text{super-}C^{(n)} \mathcal{P}\text{-LgLCA for extendible, and } \diamondsuit_{\text{Laver}, 2^{\aleph_0}}^{+n, \mathcal{P}, \text{extendible}} \text{ holds}"$ ”

where $\diamondsuit_{\text{Laver}, 2^{\aleph_0}}^{+n, \mathcal{P}, \text{extendible}}$ is the “super- $C^{(n)}$ ” version of the gen. Laver-diamond principle $\diamondsuit_{\text{Laver}, 2^{\aleph_0}}^{\mathcal{P}, \text{extendible}}$.

- ▶ Most of the known “desirable axioms” can be incorporated into a single strong form of generic Laver-diamond principle:
- ▷ Let $n \in \mathbb{N}$, \mathcal{P} a (two-step) iterable class of p.o.s, and LC a notion of large large cardinal κ .

$\diamondsuit_{Laver, \kappa}^{++ \mathcal{P}, super-C^{(n)}-LC}$: there is $f : \kappa \rightarrow V_\kappa$ s.t., for any set a , $C^{(n)}$ -cardinal $\lambda > \kappa$ and $\mathbb{P} \in \mathcal{P}$, there is a \mathbb{P} -name \tilde{Q} s.t. $\Vdash_{\mathbb{P}} \tilde{Q} \in \mathcal{P}$, and, for any $(V, \mathbb{P} * \tilde{Q})$ -generic \mathbb{H} , there are $j, M \subseteq V[\mathbb{H}]$ s.t. $j : V \xrightarrow{\sim} M$, $j(\kappa) > \lambda$, $\mathbb{P}, \tilde{Q}, \mathbb{H} \in M$, $|RO(\mathbb{P} * \tilde{Q})| = j(\kappa)$, j satisfies the closure property corresponding to LC , $V_{j(\lambda)}^{V[\mathbb{H}]} \prec_{\Sigma_n} V[\mathbb{H}]$, and $j(f)(\kappa) = a$.

- ▶ A variation of the proof of Proposition 9 shows the consistency of this $++$ version of generic Laver diamond.
- ▶ $\diamondsuit_{Laver, \kappa}^{++ \mathcal{P}, super-C^{(n)}-LC}$ implies both
 - the super $C^{(n)}$ \mathcal{P} -LgLCA for LC , and
 - $\diamondsuit_{Laver, \kappa}^{\mathcal{P}, extendible}$.

An instance of LgM

gen.Laver-diamond (12/14)

► Let \mathcal{P} = the class of all semi-proper p.o.s, LC = “hyperhuge” and $\kappa = 2^{\aleph_0}$. Then

$\diamondsuit_{Laver, \kappa}^{++ \mathcal{P}, \text{super-}C^{(\infty)}\text{-LC}}$ (i.e. $\diamondsuit_{Laver, \kappa}^{++ \mathcal{P}, \text{super-}C^{(n)}\text{-LC}}$ for all $n \in \mathbb{N}$) implies,
besides ①: $\diamondsuit_{Laver, \kappa}^{\mathcal{P}, \text{LC}}$,

- ①: MM⁺⁺, thus also $2^{\aleph_0} = \aleph_2$, SCH, and all other consequences of MM⁺⁺;
- ②: The Maximality Principle $\text{MP}(\mathcal{P}, \mathcal{H}(2^{\aleph_0}))$;
- ③: The unbounded resurrection axiom $UR(\mathcal{P})$ of Tsaprounis holds;
- ④: ② implies Viale’s Absoluteness Theorem (c.f. Francesco Parente’s talk);
- ⑤: The bedrock exists and κ (in \mathbb{V}) is super- $C^{(\infty)}$ hyperhuge cardinal in the bedrock. The bedrock is $\leq \kappa$ -ground of \mathbb{V} ;
- ⑥: ⑤ implies that there are class many super- $C^{(n)}$ hyperhuge cardinals for each $n \in \mathbb{N}$;
- ⑦: ② and ⑥ imply that each of (practically) all principles known to be consistent with set theory is a theorem in some $\leq \kappa$ -ground of \mathbb{V} .

► E.g., this is the case with Cichoń’s Maximum!

- ①: S.F., Ottenbreit Maschio Rodrigues, and Sakai [4].
- ②: S.F. and Usuba [5].
- ③: S.F. [6].
- ④: S.F., Gappo and Parente [7]
- ⑤: S.F., and Usuba [5].
- ⑥: See the [extra slide](#).
- ⑦: S.F., and Usuba [5].

[4] S.F., A. Ottenbreit Maschio Rodrigues and H. Sakai, **Strong downward Löwenheim-Skolem theorems for stationary logics, II — reflection down to the continuum**, Mathematical Logic, Vol.60, 3-4, (2021), 495–523.

[5] S.F. and T.Usuba, **On Recurrence Axioms**, Annals of Pure and Applied Logic, Vol.176, (10), (2025).

[6] S.F., **Maximality Principles and Resurrection Axioms in light of Laver-generic large cardinal**, preprint.

[7] S.F., T. Gappo, and F. Parente, **Generic Absoluteness revisited**, to appear in Journal of Symbolic Logic.

Thank you for your attention!

ご清聴ありがとうございました。

Vielen Dank für die Aufmerksamkeit.

Grazie mille per l'attenzione.

Muchas gracias por la atención.

Proposition 12. Suppose $n \in \mathbb{N}$ and κ is a super- $C^{(n')}$ -hyperhuge cardinal for a sufficiently large $n' > n$. Then there are class many super- $C^{(n)}$ -hyperhuge cardinals.

Proof. Let $n' > n$ be s.t. “being a super- $C^{(n)}$ -hyperhuge cardinal” is absolute between V_λ^V and V for a $C^{(n')}$ -cardinal λ .

- For $\mu > \kappa$, let $\lambda > \mu$ be a $C^{(n')}$ -cardinal, and let $j, M \subseteq V$ be s.t. $j : V \xrightarrow{\sim} M$, $j(\kappa) > \lambda$ ①: $j''j(\lambda) \in M$, and ②: $V_{j(\lambda)}^V \prec_{\Sigma_{n'}} V$.
- $V_\lambda^V \models \text{“}\kappa \text{ is a } C^{(n)}\text{-hyperhuge cardinal”}$ by the choice of n' and λ .
Hence
- $V_{j(\lambda)}^M \models \text{“}j(\kappa) \text{ is a } C^{(n)}\text{-hyperhuge cardinal”}$ by elementarity.
By ①, it follows that
- $V_{j(\lambda)}^V \models \text{“}j(\kappa) \text{ is a } C^{(n)}\text{-hyperhuge cardinal”}$.
- Hence by ②, $V \models \text{“}j(\kappa) \text{ is a } C^{(n)}\text{-hyperhuge cardinal”}$.
Since $j(\kappa) > \mu$ for an arbitrary μ , this proves the theorem.

□ (Proposition 12)

back

$\Vdash_{\mathbb{P}_\kappa} \text{“}g \text{ is a } \diamondsuit_{\text{Layer}, \kappa}^{\mathcal{P}, \text{extendible}}\text{-sequence”}$

– Suppose that \mathbb{G}_κ is a (V, \mathbb{P}_κ) -generic filter. Let $X \in V[\mathbb{G}_\kappa]$ and \dot{X} be a \mathbb{P}_κ -name of X .

► Let $g = g[\mathbb{G}_\kappa]$. Then $g : \kappa \rightarrow V_\kappa^{V[\mathbb{G}_\kappa]}$ and

$$g(\alpha) = \begin{cases} \mathcal{G}_\alpha, & \text{if } f(\alpha) = \langle \mathcal{Q}_\alpha, \mathcal{G}_\alpha \rangle \text{ for some } \mathcal{Q}_\alpha; \\ \emptyset, & \text{otherwise.} \end{cases}$$

- ▶ Since f is a Laver-diamond for extendible, there are $j, M \in V$ s.t.

$j : V \rightarrow_{\kappa} M$, $(*)$ $V_{j(\lambda)} \in M$ and $j(f)(\kappa) = \langle \mathbb{Q}, \mathcal{X} \rangle$ for some \mathbb{P}_{κ} -name \mathbb{Q} s.t. $\Vdash_{\mathbb{P}_{\kappa}} \text{``} \mathbb{Q} \in \mathcal{P} \text{''}$.

- ▶ Let $j(\mathbb{P}_\kappa) = \mathbb{P}_\kappa * \mathbb{R}$, and let \mathbb{H} be $(V[\mathbb{G}_\kappa], \mathbb{R}[\mathbb{G}_\kappa])$ -generic. Let $\tilde{j} : V[\mathbb{G}_\kappa] \rightarrow V[\mathbb{G}_\kappa * \mathbb{H}]$; $a[\mathbb{G}_\kappa] \mapsto j(a)[\mathbb{G}_\kappa * \mathbb{H}]$.

- ▷ Then, we have $\tilde{j} \supseteq j$, $\tilde{j} : V[\mathbb{G}_\kappa] \xrightarrow{\kappa} M[\mathbb{G}_\kappa * \mathbb{H}]$. Since \mathbb{P}_κ has the κ -cc, $j(\mathbb{P}_\kappa)$ has the $j(\kappa)$ -cc. Thus $(*)$ implies that $V_{j(\lambda)}^{V[\mathbb{G}_\kappa * \mathbb{H}]} \in M[\mathbb{G}_\kappa][\mathbb{H}]$.

▷ Also, $\tilde{j}(g)(\kappa) = j(g)(\kappa)[\mathbb{G}_\kappa] = \tilde{X}[\mathbb{G}_\kappa] = X$.

- Thus $V[\mathbb{G}_\kappa] \models "g \text{ is a } \diamondsuit_{\text{Layer}, \kappa}^{\mathcal{P}, \text{extendible}}\text{-sequence"}$.

back