Generic solution of Hamburger's Problem

Sakaé Fuchino (渕野 昌)

Kobe University, Japan

- https://fuchino.ddo.jp/index.html

(2024年12月8日 (16:50 JST) printer version)

2024年4月24日 (15:30~JST)

2024 年 5 月 1 日 (15:30~ JST) 至 Kobe Set Theory Seminar 2024

The most up-to-date version of these slides is going to be downloadable as https://fuchino.ddo.jp/slides/generic-hamburger-pf.pdf

The research is supported by Kakenhi Grant-in-Aid for Scientific Research (C) 20K03717 Pictures of the blackboards at the talk are available at:

https://fuchino.ddo.jp/kobe/bbd/Scan_2024-04-24-21.47_generic_hamburger_bb.pdf

References Generic Hamburger (2/22)

[Juhász-S.F.-et al] I. Juhász, S.F., L.Soukup, Z.Szentimiklóssy and T.Usuba, Fodor-type Reflection Principle and reflection of metrizability and meta-Lindelöfness, Topology and its Applications, Vol.157, 8 (2010). https://fuchino.ddo.jp/papers/ssmL-erice-x.pdf

- [II] S.F., A. Ottenbreit Maschio Rodrigues, and H. Sakai, Strong downward Löwenheim-Skolem theorems for stationary logics, II
 — reflection down to the continuum, Archive for Mathematical Logic, Vol.60, 3-4, (2021), 495–523.
 https://fuchino.ddo.jp/papers/SDLS-II-x.pdf
- [S.F.] S.F., Resurrection and Recurrence, to appear in the Festschrift on the occasion of the 75. birthday of Professor Janos Makowsky. https://fuchino.ddo.jp/papers/reflection_and_recurrence-Janos-Festschrift-x.pdf
- [S.F. & Usuba] S.F., and T. Usuba, On Recurrence Axioms, preprint. https://fuchino.ddo.jp/papers/recurrence-axioms-x.pdf

- Outline
- > The Hamburger's Question in original form

- ▶ An extra slide added after the first talk.
- Generic Hamburger's Problem GHH
- ►⊳ Three typical instances of Thm. 10
- ▶ Proof of Thm. 10
- ► Sufficiently almost-free algebras are free
- ▶ Restricted Recurrence Axioms
- ► Generic Reflection Principle
- ► Laver-genericity with exact consistency strength
- ► The Higher Infinite

The Hamburger's Question in original from

- ▶ Is the following statement consistent?
 - a question asked by P. Hamburger in 1970's
- (The Hamburger's Statement in original form): For any non-metrizable topological space X, there is a non-metrizable subspace Y of X of cardinality $< \aleph_2$.
- \triangleright A topological space $X=(X,\mathcal{O})$ is metrizable if there is a metric d on X s.t. $\mathcal{O}=\mathcal{O}_d$ where \mathcal{O}_d is the topology induced from d. X is non-metrizable if there is no such metric d.
- ▶ Note that if *X* is metrizable then any subspace of *X* is also metrizable.
- (Reformulation of the Hamburger's Statement): For any topological space X, X is metrizable if and only if all subspace Y of X of cardinality $< \aleph_2$ are metrizable.

- ▶ Is the following statement consistent?
 - a question asked by P. Hamburger in 1970's
- (Hamburger's Statement in original form): For any non-metrizable topological space X, there is a non-metrizable subspace Y of X of cardinality $< \aleph_2$.

The statement above is false.

Example 1 (Hajnal and Juhász (1976)). For any set X of uncountable cardinality and $p \notin X$. Let \mathcal{O} be the topology on $X \cup \{p\}$ generated by

$$\{\{a\} : a \in X\} \cup \{X \cup \{p\} \setminus A : A \in [X]^{<|X|}\}.$$

▶ $X \cup \{p\}$ is non-metrizable but any $Y \in [X \cup \{p\}]^{<|X|}$ is metrizable.

Revised Hamburger's Problem HH

- ► The following revised problem is called as Hamburger's Problem today:
- ▷ Is the following hypothesis consistent?

(HH): For any first countable (i.e. $\chi(X) = \aleph_0$) topological space X, X is non-metrizable if and only if there is a non-metrizable subspace Y of X of cardinality $< \aleph_2$.

- ▶ This problem is still open.

- (HH): For any first countable (i.e. $\chi(X) = \aleph_0$) topological space X, X is non-metrizable if and only if there is a non-metrizable subspace Y of X of cardinality $< \aleph_2$.
- **Lemma 2.** The assertion of **HH** with $< \aleph_2$ replaced by $< \aleph_1$ is false.
- **Prop. 3 (Hajnal and Juhász (1976)).** If there is a non-reflecting stationary $S \subseteq E_{\omega}^{\lambda}$ for a regular cardinal λ then **HH** does not hold.
- **Cor. 4. HH** implies that $\neg \Box_{\kappa}$ holds for all uncountable κ .
- **Thm. 5** (A. Dow). For any countably compact space X, the space X is non-metrizable if and only if there is a subspace Y of X of size $< \aleph_2$ s.t. Y is non-metrizable.
- Thm. 6 ([Juhász-S.F.-et al]). The following follows from MA⁺(σ -closed): For any locally countably compact space X, the space X is non-metrizable if and only if there is a non-metrizable subspace Y of X of cardinality $< \aleph_2$.

- (HH): For any first countable (i.e. $\chi(X) = \omega$) topological space X, X is non-metrizable if and only if there is a non-metrizable subspace Y of X of cardinality $< \aleph_2$.
- **Thm. 6** ([Juhász-S.F.-et al]). The following follows from $MA^+(\sigma\text{-closed})$: For any locally countably compact space X, the space X is non-metrizable if and only if there is a non-metrizable subspace Y of X of cardinality $<\aleph_2$.
- ► The following Proposition (an improvement of the result by Hajnal and Juhász (Prop. 3)) shows that the reflection statement in Thm. 6 is also a large cardinal property:
- **Prop. 7** ([Juhász-S.F.-et al]). If there is a non-reflecting stationary set $S \subseteq E_\omega^\lambda$ for a regular cardinal $\lambda > \omega_1$ then we can construct a counter-example to the reflection statement of Thm. 6.
- Cor. 8. ([Juhász-S.F.-et al]). The reflection statement of Thm. 6 implies $\neg \square_{\kappa}$ for all uncountable κ . I.e. \square_{κ} for a $\kappa \geq \omega_1 \rightarrow \neg$ claim of Thm.6.

- ► The following variation of Hamburger's Hypothesis is known to be consistent:
- (HH)_{<2 $^{\aleph_0}$}: For any topological space X with $\chi(X) < 2^{\aleph_0}$, X is non-metrizable if and only if there is a non-metrizable subspace Y of X of cardinality $< 2^{\aleph_0}$.

- **Thm. 9.** (A. Dow, F. Tall, and W. Weiss, 1990) $HH_{<2^{\aleph_0}}$ is consistent under the consistency of a supercompact cardinal.
- **Proof.** Adding supercompact many Cohen reals makes a model of $HH_{<2^{\aleph_0}}$
 - ☐ (Thm. 9)

- ▶ In most of the cases, \square_{κ} for some uncountable κ negates the reflection property in consideration.
- ► Actually the reflection property of Thm. 6 is known to be equivalent to the combinatorial principle called the Fodor-type reflection principle, and it can be characterized as a total negation of a weak variant of square principle ([1]).
- [1] S.F., Hiroshi Sakai, Lajos Soukup and Toshimichi Usuba, More about Fodor-type Reflection Principle, https://fuchino.ddo.jp/papers/moreFRP-x.pdf
- Some more explanations about generic large cardinals and Laver-generic large cardinals (→ blackboard)
 [Two lemmas illustrating the background of generic large cardinals]

The Higher Infinite

- ► We can prove the consistency of the following modification of HH (under the consistency of an large large cardinal < 2-huge):
- ▶ In the following we assume that the topology of a topological space X is given by its open base $X = (X, \tau)$.
- ${
 ightarrow}$ Suppose that ${\mathcal P}$ is a class of p.o.s.
- A topological space $X=(X,\tau)$ is said to be \mathcal{P} -indestructibly non-metrizable if $\Vdash_{\mathbb{P}}$ " $\check{X}=(\check{X},\check{\tau})$ is non-metrizable " holds for all $\mathbb{P}\in\mathcal{P}$.
- (GHH $^{\mathcal{P}}_{<\kappa}$): For any \mathcal{P} -indestructibly non-metrizable space X of character $<\kappa$, there is a non-metrizable subspace $Y\subseteq X$ of size $<\kappa$.
- (GHH $_{<\kappa}^{\mathcal{P}}$): For any \mathcal{P} -indestructibly non-metrizable space X of character $<\kappa$, there is a \mathcal{P} -indestructibly non-metrizable subspace $Y\subseteq X$ of size $<\kappa$.

Generic Hamburger's Problem GHH (2/2)

- ▶ κ is \mathcal{P} -generically supercompact, if for any $\lambda \geq \kappa$ there is $\mathbb{P} \in \mathcal{P}$ s.t. for (V, \mathbb{P}) -generic \mathbb{G} there are j, $M \subseteq V[\mathbb{G}]$ s.t. $j : V \xrightarrow{\prec}_{\kappa} M$, $j(\kappa) > \lambda$ and $j''\lambda \in M$.
- ► An inner model W (of ZFC) in V is said to be a ground if V is a set generic extension of W.
- ► For a set Π , (\mathcal{P}, Π) -Recurrence Axiom $((\mathcal{P}, \Pi)$ -RcA, for short) is the assertion:
- ((\mathcal{P},Π)-RcA): For any $\mathbb{P}\in\mathcal{P}$ and $\vec{p}\in\Pi$, if $\Vdash_{\mathbb{P}}$ " $\varphi(\vec{p})$ " then there is a ground W in V s.t. $\vec{p}\in W$ and $W\models\varphi(\vec{p})$.
- **Thm. 10.** (1) If $\kappa > \aleph_1$ is \mathcal{P} -generically supercompact, then $\mathsf{GHH}^{\mathcal{P}^-}_{\kappa\kappa}$ holds.
- (2) If $\kappa > \aleph_1$ is \mathcal{P} -generically supercompact, and $(\mathcal{P}, \mathcal{H}(\kappa))$ -RcA holds, then $\mathsf{GHH}^{\mathcal{P}}_{<\kappa}$ holds.

Three typical instances of Thm. 10

- $ightharpoonup \kappa_{\text{refl}} := \max\{2^{\aleph_0}, \aleph_2\}$
- ightharpoonup is (tightly) \mathcal{P} -Laver-gen. supercompact (superhuge) if ...

```
\begin{array}{ll} \kappa \text{ is } \mathcal{P}\text{-Laver-gen. supercompact } + (\mathcal{P},\mathcal{H}(\kappa_{\mathfrak{refl}}))\text{-RcA} \\ \text{for } \mathcal{P}\text{= }\sigma\text{-closed p.o.s.} & \rhd \text{ This implies } \kappa = 2^{\aleph_0} = \aleph_1, \\ \text{MA}^{++}(\sigma\text{-closed}), \text{ and } \text{GHH}^{\mathcal{P}}_{\leq 2^{\aleph_0}}. & \text{ (i.e. GHH}^{\mathcal{P}}_{<\kappa_{\mathfrak{refl}}}) \end{array}
```

```
\begin{array}{ll} \kappa \text{ is } \mathcal{P}\text{-Laver-gen. supercompact } + (\mathcal{P},\mathcal{H}(\kappa_{\mathfrak{refl}}))\text{-RcA} \\ \text{for } \mathcal{P} = & \text{semi-proper p.o.s. } (\text{or proper}) > & \text{This implies } \kappa = \\ 2^{\aleph_0} = \aleph_2, \ \mathsf{MM}^{++} \ \text{(or PFA}^{++}), \ \text{and } \ \mathsf{GHH}^{\mathcal{P}}_{<\aleph_2}. \end{array} \qquad \text{(i.e. $\mathsf{GHH}^{\mathcal{P}}_{<\kappa_{\mathfrak{refl}}}$)}
```

```
\kappa is tightly \mathcal{P}-Laver-gen. superhuge + (\mathcal{P},\mathcal{H}(\kappa_{\mathfrak{refl}}))-RcA for \mathcal{P}=c.c.c. p.o.s. \triangleright This implies that \kappa=2^{\aleph_0} is extremely large, a strong variant of MA, and \mathsf{GHH}^{\mathcal{P}}_{<2^{\aleph_0}}. (i.e. \mathsf{GHH}^{\mathcal{P}}_{<\kappa_{\mathsf{refl}}})
```

▶ In the next talk, we shall improve the axiomatic framework of these instances (in particular, replacing the assumptions with axioms whose exact consistency strength is known).

- ▶▶ The proof will be given on the blackboards!!!
 - ▶ κ is \mathcal{P} -generically supercompact, if for any $\lambda \geq \kappa$ there is $\mathbb{P} \in \mathcal{P}$ s.t. for (V, \mathbb{P}) -generic \mathbb{G} there are j, $M \subseteq V[\mathbb{G}]$ s.t. $j : V \xrightarrow{}_{\kappa} M$, $j(\kappa) > \lambda$ and $j''\lambda \in M$.
 - ► An inner model W (of ZFC) in V is said to be a ground if V is a set generic extension of W.
 - ► For a set Π , (\mathcal{P}, Π) -Recurrence Axiom $((\mathcal{P}, \Pi)$ -RcA, for short) is the assertion:
 - ((\mathcal{P},Π)-RcA): For any $\mathbb{P}\in\mathcal{P}$ and $\vec{p}\in\Pi$, if $\Vdash_{\mathbb{P}}$ " $\varphi(\vec{p})$ " then there is a ground W in V s.t. $\vec{p}\in W$ and $W\models\varphi(\vec{p})$.
 - **Thm. 10.** (1) If $\kappa > \aleph_1$ is \mathcal{P} -generically supercompact, then $\mathsf{GHH}^{\mathcal{P}^-}_{\kappa}$ holds.
 - (2) If $\kappa > \aleph_1$ is \mathcal{P} -generically supercompact, and $(\mathcal{P}, \mathcal{H}(\kappa))$ -RcA holds, then $\mathsf{GHH}^{\mathcal{P}}_{<\kappa}$ holds.

- **Prop. 11.** ([2]) Let \mathcal{V} be a universal algebraic variety and $A \in \mathcal{V}$. If \mathbb{P} is a ccc p.o. and $\Vdash_{\mathbb{P}}$ " A is free" then A is really free.
- [2] S.F., On Potential embedding and versions of Martin's axiom, Notre Dame Journal of Formal Logic, Vol.33.No.4 (1992), 481–492.
- **Thm. 12.** Suppose that κ is ccc-generic supercompact. Let $\mathcal V$ be as above. Then For any $A \in \mathcal V$ of cardinality $\geq \kappa$, A is free if and only if $\{B: B \leq A, |B| < \kappa, B \text{ is free}\}$ contains a club in $[A]^{<\kappa}$.
- **Cor. 13.** Suppose that κ is ccc-generic supercompact. Then any (abelian) group G is not a(n abelian) free group if there is $H \leq G$ of cardinality $< \kappa$ s.t. H is non-free.
- **Cor. 14.** Suppose that κ is ccc-generic supercompact. Then any Boolean algebra B is non-free if and only if there are stationary many non-free $A \leq B$ of cardinality $< \kappa$.

- ▶ For $n \in \omega$.
- $((\mathcal{P},\Pi)_{\Sigma}-RcA)$: For any $\mathbb{P}\in\mathcal{P}$, $\vec{p}\in\Pi$, and Σ_n -formula φ , if $\Vdash_{\mathbb{P}}$ " $\varphi(\vec{p})$ " then there is a ground W in V s.t. $\vec{p} \in W$ and $W \models \varphi(\vec{p}).$
- **Lemma 15.** "X is metrizable" is Σ_1 : over the parameters (X, τ, \mathbb{Q}) , $(\exists d \cdots)$
- **Thm. 16** ([S.F.&Usuba]). Suppose that κ is tightly \mathcal{P} -Lever-gen. ultrahuge for an iterable class \mathcal{P} of p.o.s. Then $(\mathcal{P},\mathcal{H}(\kappa))_{\Sigma_2}$ -RcA holds (the theorem in [S.F.& Usuba] is slightly stronger than this statement).
- **Cor. 17.** Suppose that κ is tightly \mathcal{P} -Lever-gen. ultrahuge for one of the "typical" classes \mathcal{P} of p.o.s on the previous slide. Then $GHH_{\kappa_{reff}}^{\mathcal{P}}$ holds.
- **Proof.** Just repeat the proof of Thm. 10, (1) using Lemma 15 and Thm. 16. 🗇 (Cor. 17) **4ロト4回ト4三ト4三ト ヨ り**900

- For a topological structure $\mathfrak A$ (like topological group, Banach algebra, etc. but also purely algebraic structure without topology like group, abelian group, Boolean algebra, etc.) a property P of $\mathfrak A$ is $\mathcal P$ -indestructible (or $\mathfrak A$ is $\mathcal P$ -indestructibly P) if $\Vdash_{\mathbb P}$ " $\mathfrak A$ has the property P" for all $\mathbb P \in \mathcal P$.
- $(\mathsf{GR}^{\mathcal{P}}_{<\kappa})$: Suppose that \mathcal{T} is any class of topological structures s.t. all $\mathfrak{A} \in \mathcal{T}$ is of character $<\kappa$ (as topological space). Then, for any Σ_1 property P of elements of \mathcal{T} , if $\mathfrak{A} \in \mathcal{T}$ is \mathcal{P} -indestructibly $\neg P$, there are stationarily many (topological) substructures \mathfrak{B} of \mathfrak{A} of size $<\kappa$ which is also \mathcal{P} -indestructibly $\neg P$.
- **Cor. 17A.** Suppose that κ is tightly \mathcal{P} -Lever-gen. ultrahuge for one of the "typical" classes \mathcal{P} of p.o.s on the previous slide. Then $\mathsf{GR}^{\mathcal{P}}_{\kappa_{\mathsf{teff}}}$ holds.
- Proof. Similarly to Cor. 17.

(Cor. 17A)

➤ Note that reflection statements of Thm.10., Thm.12 are special cases of Cor.17A

- An inner model \overline{W} of V is said to be a bedrock if it is the minimal ground.
- **Thm. 18** ([S.F.&Usuba]). Suppose that κ is tightly \mathcal{P} -gen. hyperhuge (this is stronger than tightly \mathcal{P} -gen. ultrahuge), then there is a bedrock and κ is a hyperhuge cardinal in the bedrock.
- **Cor. 19** ([S.F.&Usuba]). For a natural class \mathcal{P} (as in the three instances of Thm. 10) of p.o.s the following statements are equiconsistent ((a) \Rightarrow (b) and (a) \Rightarrow (c) are implications):
- (a) $\kappa = \kappa_{\mathfrak{refl}}$ is tightly $\mathcal{P} ext{-Laver-gen.}$ hyperhuge.
- (b) There is a κ which is tightly \mathcal{P} -gen. hyperhuge.
- (c) $\kappa_{\mathfrak{refl}}$ is hyperhuge in the bedrock of V.
- (d) There is a hyperhuge cardinal.

▶ For most of the notions of large large cardinals, The tightly \mathcal{P} -Laver-gen. large cardinal axiom (the axiom asserting the existence of such a cardinal) does not imply the full (\mathcal{P}, \emptyset) -RcA.

— Theorem 5.11 in [S.F. ∞]

[S.F. ∞] S.F., Maximality Principles and Resurrection Axioms under a Laver-generic large cardinal, preprint,
https://fuchino.ddo.jp/papers/RIMS2022-RA-MP-x.pdf

Thm. 20 ([S.F.&Usuba]). Suppose that $\mathcal P$ is iterable class of p.o.s and κ is tightly super $C^{(\infty)}$ - $\mathcal P$ -Laver-gem. ultrahuge cardinal. Then $(\mathcal P,\mathcal H(\kappa))$ -RcA holds. \uparrow definition: on the blackboard \to

Thm. 20 ([S.F.&Usuba]). Suppose that \mathcal{P} is iterable class of p.o.s and κ is tightly super $C^{(\infty)}$ - \mathcal{P} -Laver-gem. ultrahuge cardinal. Then $(\mathcal{P},\mathcal{H}(\kappa))$ -RcA holds. \uparrow definition: on the blackboard \rightarrow

Proof. Similarly to the proof of Thm. 16.

(Thm. 20)

Thm. 21 ([S.F.&Usuba]). Let \mathcal{P} be as above. Then the following statements are equiconsistent. Their consistency follows from a 2-huge cardinal:

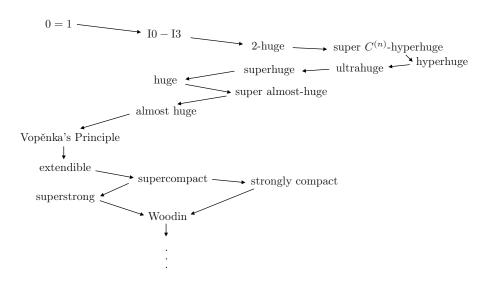
- (a) $\kappa = \kappa_{\mathfrak{refl}}$ is tightly super $C^{(\infty)}$ \mathcal{P} -Laver-gen. hyperhuge cardinal.
- (b) κ_{refl} is super $C^{(\infty)}$ -hyperhuge in the bedrock of V.

Proof. By (the proof of) Thm. 18.

(Thm. 22)

Open problem. Can "hyperhuge" in Thm. 18 (and Cor. 19, Thm. 21) be replaced by "ultrahuge" (or by "superhuge" or even by "super almost-huge")? — for genuine large cardinals "hyperhuge" can be replaced by "extendible" by a result of Usuba.

The Higher Infinite



Two Lemmas in connection with generic large cardinals

Lemma A1. (Proposition 22.4 in [higher-infinite]) Suppose that U is an ω_1 -complete ultrafilter over a set S and $j: V \xrightarrow{\sim}_{\kappa} M$ is the elementary embedding induced from U then for any cardincal γ , $j''\gamma \in M$ if and only if ${}^{\gamma}M \subseteq M$.

Lemma A2. (Lemma 2.5 in S.F., Rodrigues and Sakai [II]) Suppose that \mathbb{G} is a (V,\mathbb{P}) -generic filter for a p.o. $\mathbb{P} \in V$, and $j:V \xrightarrow{\preceq} M \subseteq V[\mathbb{G}]$ is s.t., for cardinals κ , λ in V with $\kappa \leq \lambda$, $crit(j) = \kappa$ and $j''\lambda \in M$.

- (1) For any set $A \in V$ with $V \models |A| \le \lambda$, we have $j''A \in M$.
- (2) $j \upharpoonright \lambda, j \upharpoonright \lambda^2 \in M.$
- (3) For any $A \in V$ with $A \subseteq \lambda$ or $A \subseteq \lambda^2$ we have $A \in M$.
- (4) $(\lambda^+)^M \ge (\lambda^+)^V$, Thus, if $(\lambda^+)^V = (\lambda^+)^{V[\mathbb{G}]}$, then $(\lambda^+)^M = (\lambda^+)^V$.
- (5) $\mathcal{H}(\lambda^+)^{\mathsf{V}} \subseteq M$.
- (6) $j \upharpoonright A \in M$ for all $A \in \mathcal{H}(\lambda^+)^{\mathsf{V}}$.

