Generic solution of Hamburger's Problem ### Sakaé Fuchino (渕野 昌) Kobe University, Japan - https://fuchino.ddo.jp/index.html (2024年12月8日 (16:50 JST) printer version) 2024年4月24日 (15:30~JST) 2024 年 5 月 1 日 (15:30~ JST) 至 Kobe Set Theory Seminar 2024 The most up-to-date version of these slides is going to be downloadable as https://fuchino.ddo.jp/slides/generic-hamburger-pf.pdf The research is supported by Kakenhi Grant-in-Aid for Scientific Research (C) 20K03717 Pictures of the blackboards at the talk are available at: https://fuchino.ddo.jp/kobe/bbd/Scan_2024-04-24-21.47_generic_hamburger_bb.pdf References Generic Hamburger (2/22) [Juhász-S.F.-et al] I. Juhász, S.F., L.Soukup, Z.Szentimiklóssy and T.Usuba, Fodor-type Reflection Principle and reflection of metrizability and meta-Lindelöfness, Topology and its Applications, Vol.157, 8 (2010). https://fuchino.ddo.jp/papers/ssmL-erice-x.pdf - [II] S.F., A. Ottenbreit Maschio Rodrigues, and H. Sakai, Strong downward Löwenheim-Skolem theorems for stationary logics, II — reflection down to the continuum, Archive for Mathematical Logic, Vol.60, 3-4, (2021), 495–523. https://fuchino.ddo.jp/papers/SDLS-II-x.pdf - [S.F.] S.F., Resurrection and Recurrence, to appear in the Festschrift on the occasion of the 75. birthday of Professor Janos Makowsky. https://fuchino.ddo.jp/papers/reflection_and_recurrence-Janos-Festschrift-x.pdf - [S.F. & Usuba] S.F., and T. Usuba, On Recurrence Axioms, preprint. https://fuchino.ddo.jp/papers/recurrence-axioms-x.pdf - Outline - > The Hamburger's Question in original form - ▶ An extra slide added after the first talk. - Generic Hamburger's Problem GHH - ►⊳ Three typical instances of Thm. 10 - ▶ Proof of Thm. 10 - ► Sufficiently almost-free algebras are free - ▶ Restricted Recurrence Axioms - ► Generic Reflection Principle - ► Laver-genericity with exact consistency strength - ► The Higher Infinite #### The Hamburger's Question in original from - ▶ Is the following statement consistent? - a question asked by P. Hamburger in 1970's - (The Hamburger's Statement in original form): For any non-metrizable topological space X, there is a non-metrizable subspace Y of X of cardinality $< \aleph_2$. - \triangleright A topological space $X=(X,\mathcal{O})$ is metrizable if there is a metric d on X s.t. $\mathcal{O}=\mathcal{O}_d$ where \mathcal{O}_d is the topology induced from d. X is non-metrizable if there is no such metric d. - ▶ Note that if *X* is metrizable then any subspace of *X* is also metrizable. - (Reformulation of the Hamburger's Statement): For any topological space X, X is metrizable if and only if all subspace Y of X of cardinality $< \aleph_2$ are metrizable. - ▶ Is the following statement consistent? - a question asked by P. Hamburger in 1970's - (Hamburger's Statement in original form): For any non-metrizable topological space X, there is a non-metrizable subspace Y of X of cardinality $< \aleph_2$. #### The statement above is false. **Example 1 (Hajnal and Juhász (1976)).** For any set X of uncountable cardinality and $p \notin X$. Let \mathcal{O} be the topology on $X \cup \{p\}$ generated by $$\{\{a\} : a \in X\} \cup \{X \cup \{p\} \setminus A : A \in [X]^{<|X|}\}.$$ ▶ $X \cup \{p\}$ is non-metrizable but any $Y \in [X \cup \{p\}]^{<|X|}$ is metrizable. #### Revised Hamburger's Problem HH - ► The following revised problem is called as Hamburger's Problem today: - ▷ Is the following hypothesis consistent? (HH): For any first countable (i.e. $\chi(X) = \aleph_0$) topological space X, X is non-metrizable if and only if there is a non-metrizable subspace Y of X of cardinality $< \aleph_2$. - ▶ This problem is still open. - (HH): For any first countable (i.e. $\chi(X) = \aleph_0$) topological space X, X is non-metrizable if and only if there is a non-metrizable subspace Y of X of cardinality $< \aleph_2$. - **Lemma 2.** The assertion of **HH** with $< \aleph_2$ replaced by $< \aleph_1$ is false. - **Prop. 3 (Hajnal and Juhász (1976)).** If there is a non-reflecting stationary $S \subseteq E_{\omega}^{\lambda}$ for a regular cardinal λ then **HH** does not hold. - **Cor. 4. HH** implies that $\neg \Box_{\kappa}$ holds for all uncountable κ . - **Thm. 5** (A. Dow). For any countably compact space X, the space X is non-metrizable if and only if there is a subspace Y of X of size $< \aleph_2$ s.t. Y is non-metrizable. - Thm. 6 ([Juhász-S.F.-et al]). The following follows from MA⁺(σ -closed): For any locally countably compact space X, the space X is non-metrizable if and only if there is a non-metrizable subspace Y of X of cardinality $< \aleph_2$. - (HH): For any first countable (i.e. $\chi(X) = \omega$) topological space X, X is non-metrizable if and only if there is a non-metrizable subspace Y of X of cardinality $< \aleph_2$. - **Thm. 6** ([Juhász-S.F.-et al]). The following follows from $MA^+(\sigma\text{-closed})$: For any locally countably compact space X, the space X is non-metrizable if and only if there is a non-metrizable subspace Y of X of cardinality $<\aleph_2$. - ► The following Proposition (an improvement of the result by Hajnal and Juhász (Prop. 3)) shows that the reflection statement in Thm. 6 is also a large cardinal property: - **Prop. 7** ([Juhász-S.F.-et al]). If there is a non-reflecting stationary set $S \subseteq E_\omega^\lambda$ for a regular cardinal $\lambda > \omega_1$ then we can construct a counter-example to the reflection statement of Thm. 6. - Cor. 8. ([Juhász-S.F.-et al]). The reflection statement of Thm. 6 implies $\neg \square_{\kappa}$ for all uncountable κ . I.e. \square_{κ} for a $\kappa \geq \omega_1 \rightarrow \neg$ claim of Thm.6. - ► The following variation of Hamburger's Hypothesis is known to be consistent: - (HH)_{<2 $^{\aleph_0}$}: For any topological space X with $\chi(X) < 2^{\aleph_0}$, X is non-metrizable if and only if there is a non-metrizable subspace Y of X of cardinality $< 2^{\aleph_0}$. - **Thm. 9.** (A. Dow, F. Tall, and W. Weiss, 1990) $HH_{<2^{\aleph_0}}$ is consistent under the consistency of a supercompact cardinal. - **Proof.** Adding supercompact many Cohen reals makes a model of $HH_{<2^{\aleph_0}}$ - ☐ (Thm. 9) - ▶ In most of the cases, \square_{κ} for some uncountable κ negates the reflection property in consideration. - ► Actually the reflection property of Thm. 6 is known to be equivalent to the combinatorial principle called the Fodor-type reflection principle, and it can be characterized as a total negation of a weak variant of square principle ([1]). - [1] S.F., Hiroshi Sakai, Lajos Soukup and Toshimichi Usuba, More about Fodor-type Reflection Principle, https://fuchino.ddo.jp/papers/moreFRP-x.pdf - Some more explanations about generic large cardinals and Laver-generic large cardinals (→ blackboard) [Two lemmas illustrating the background of generic large cardinals] The Higher Infinite - ► We can prove the consistency of the following modification of HH (under the consistency of an large large cardinal < 2-huge): - ▶ In the following we assume that the topology of a topological space X is given by its open base $X = (X, \tau)$. - ${ ightarrow}$ Suppose that ${\mathcal P}$ is a class of p.o.s. - A topological space $X=(X,\tau)$ is said to be \mathcal{P} -indestructibly non-metrizable if $\Vdash_{\mathbb{P}}$ " $\check{X}=(\check{X},\check{\tau})$ is non-metrizable " holds for all $\mathbb{P}\in\mathcal{P}$. - (GHH $^{\mathcal{P}}_{<\kappa}$): For any \mathcal{P} -indestructibly non-metrizable space X of character $<\kappa$, there is a non-metrizable subspace $Y\subseteq X$ of size $<\kappa$. - (GHH $_{<\kappa}^{\mathcal{P}}$): For any \mathcal{P} -indestructibly non-metrizable space X of character $<\kappa$, there is a \mathcal{P} -indestructibly non-metrizable subspace $Y\subseteq X$ of size $<\kappa$. ## Generic Hamburger's Problem GHH (2/2) - ▶ κ is \mathcal{P} -generically supercompact, if for any $\lambda \geq \kappa$ there is $\mathbb{P} \in \mathcal{P}$ s.t. for (V, \mathbb{P}) -generic \mathbb{G} there are j, $M \subseteq V[\mathbb{G}]$ s.t. $j : V \xrightarrow{\prec}_{\kappa} M$, $j(\kappa) > \lambda$ and $j''\lambda \in M$. - ► An inner model W (of ZFC) in V is said to be a ground if V is a set generic extension of W. - ► For a set Π , (\mathcal{P}, Π) -Recurrence Axiom $((\mathcal{P}, \Pi)$ -RcA, for short) is the assertion: - ((\mathcal{P},Π)-RcA): For any $\mathbb{P}\in\mathcal{P}$ and $\vec{p}\in\Pi$, if $\Vdash_{\mathbb{P}}$ " $\varphi(\vec{p})$ " then there is a ground W in V s.t. $\vec{p}\in W$ and $W\models\varphi(\vec{p})$. - **Thm. 10.** (1) If $\kappa > \aleph_1$ is \mathcal{P} -generically supercompact, then $\mathsf{GHH}^{\mathcal{P}^-}_{\kappa\kappa}$ holds. - (2) If $\kappa > \aleph_1$ is \mathcal{P} -generically supercompact, and $(\mathcal{P}, \mathcal{H}(\kappa))$ -RcA holds, then $\mathsf{GHH}^{\mathcal{P}}_{<\kappa}$ holds. #### Three typical instances of Thm. 10 - $ightharpoonup \kappa_{\text{refl}} := \max\{2^{\aleph_0}, \aleph_2\}$ - ightharpoonup is (tightly) \mathcal{P} -Laver-gen. supercompact (superhuge) if ... ``` \begin{array}{ll} \kappa \text{ is } \mathcal{P}\text{-Laver-gen. supercompact } + (\mathcal{P},\mathcal{H}(\kappa_{\mathfrak{refl}}))\text{-RcA} \\ \text{for } \mathcal{P}\text{= }\sigma\text{-closed p.o.s.} & \rhd \text{ This implies } \kappa = 2^{\aleph_0} = \aleph_1, \\ \text{MA}^{++}(\sigma\text{-closed}), \text{ and } \text{GHH}^{\mathcal{P}}_{\leq 2^{\aleph_0}}. & \text{ (i.e. GHH}^{\mathcal{P}}_{<\kappa_{\mathfrak{refl}}}) \end{array} ``` ``` \begin{array}{ll} \kappa \text{ is } \mathcal{P}\text{-Laver-gen. supercompact } + (\mathcal{P},\mathcal{H}(\kappa_{\mathfrak{refl}}))\text{-RcA} \\ \text{for } \mathcal{P} = & \text{semi-proper p.o.s. } (\text{or proper}) > & \text{This implies } \kappa = \\ 2^{\aleph_0} = \aleph_2, \ \mathsf{MM}^{++} \ \text{(or PFA}^{++}), \ \text{and } \ \mathsf{GHH}^{\mathcal{P}}_{<\aleph_2}. \end{array} \qquad \text{(i.e. $\mathsf{GHH}^{\mathcal{P}}_{<\kappa_{\mathfrak{refl}}}$)} ``` ``` \kappa is tightly \mathcal{P}-Laver-gen. superhuge + (\mathcal{P},\mathcal{H}(\kappa_{\mathfrak{refl}}))-RcA for \mathcal{P}=c.c.c. p.o.s. \triangleright This implies that \kappa=2^{\aleph_0} is extremely large, a strong variant of MA, and \mathsf{GHH}^{\mathcal{P}}_{<2^{\aleph_0}}. (i.e. \mathsf{GHH}^{\mathcal{P}}_{<\kappa_{\mathsf{refl}}}) ``` ▶ In the next talk, we shall improve the axiomatic framework of these instances (in particular, replacing the assumptions with axioms whose exact consistency strength is known). - ▶▶ The proof will be given on the blackboards!!! - ▶ κ is \mathcal{P} -generically supercompact, if for any $\lambda \geq \kappa$ there is $\mathbb{P} \in \mathcal{P}$ s.t. for (V, \mathbb{P}) -generic \mathbb{G} there are j, $M \subseteq V[\mathbb{G}]$ s.t. $j : V \xrightarrow{}_{\kappa} M$, $j(\kappa) > \lambda$ and $j''\lambda \in M$. - ► An inner model W (of ZFC) in V is said to be a ground if V is a set generic extension of W. - ► For a set Π , (\mathcal{P}, Π) -Recurrence Axiom $((\mathcal{P}, \Pi)$ -RcA, for short) is the assertion: - ((\mathcal{P},Π)-RcA): For any $\mathbb{P}\in\mathcal{P}$ and $\vec{p}\in\Pi$, if $\Vdash_{\mathbb{P}}$ " $\varphi(\vec{p})$ " then there is a ground W in V s.t. $\vec{p}\in W$ and $W\models\varphi(\vec{p})$. - **Thm. 10.** (1) If $\kappa > \aleph_1$ is \mathcal{P} -generically supercompact, then $\mathsf{GHH}^{\mathcal{P}^-}_{\kappa}$ holds. - (2) If $\kappa > \aleph_1$ is \mathcal{P} -generically supercompact, and $(\mathcal{P}, \mathcal{H}(\kappa))$ -RcA holds, then $\mathsf{GHH}^{\mathcal{P}}_{<\kappa}$ holds. - **Prop. 11.** ([2]) Let \mathcal{V} be a universal algebraic variety and $A \in \mathcal{V}$. If \mathbb{P} is a ccc p.o. and $\Vdash_{\mathbb{P}}$ " A is free" then A is really free. - [2] S.F., On Potential embedding and versions of Martin's axiom, Notre Dame Journal of Formal Logic, Vol.33.No.4 (1992), 481–492. - **Thm. 12.** Suppose that κ is ccc-generic supercompact. Let $\mathcal V$ be as above. Then For any $A \in \mathcal V$ of cardinality $\geq \kappa$, A is free if and only if $\{B: B \leq A, |B| < \kappa, B \text{ is free}\}$ contains a club in $[A]^{<\kappa}$. - **Cor. 13.** Suppose that κ is ccc-generic supercompact. Then any (abelian) group G is not a(n abelian) free group if there is $H \leq G$ of cardinality $< \kappa$ s.t. H is non-free. - **Cor. 14.** Suppose that κ is ccc-generic supercompact. Then any Boolean algebra B is non-free if and only if there are stationary many non-free $A \leq B$ of cardinality $< \kappa$. - ▶ For $n \in \omega$. - $((\mathcal{P},\Pi)_{\Sigma}-RcA)$: For any $\mathbb{P}\in\mathcal{P}$, $\vec{p}\in\Pi$, and Σ_n -formula φ , if $\Vdash_{\mathbb{P}}$ " $\varphi(\vec{p})$ " then there is a ground W in V s.t. $\vec{p} \in W$ and $W \models \varphi(\vec{p}).$ - **Lemma 15.** "X is metrizable" is Σ_1 : over the parameters (X, τ, \mathbb{Q}) , $(\exists d \cdots)$ - **Thm. 16** ([S.F.&Usuba]). Suppose that κ is tightly \mathcal{P} -Lever-gen. ultrahuge for an iterable class \mathcal{P} of p.o.s. Then $(\mathcal{P},\mathcal{H}(\kappa))_{\Sigma_2}$ -RcA holds (the theorem in [S.F.& Usuba] is slightly stronger than this statement). - **Cor. 17.** Suppose that κ is tightly \mathcal{P} -Lever-gen. ultrahuge for one of the "typical" classes \mathcal{P} of p.o.s on the previous slide. Then $GHH_{\kappa_{reff}}^{\mathcal{P}}$ holds. - **Proof.** Just repeat the proof of Thm. 10, (1) using Lemma 15 and Thm. 16. 🗇 (Cor. 17) **4ロト4回ト4三ト4三ト ヨ り**900 - For a topological structure $\mathfrak A$ (like topological group, Banach algebra, etc. but also purely algebraic structure without topology like group, abelian group, Boolean algebra, etc.) a property P of $\mathfrak A$ is $\mathcal P$ -indestructible (or $\mathfrak A$ is $\mathcal P$ -indestructibly P) if $\Vdash_{\mathbb P}$ " $\mathfrak A$ has the property P" for all $\mathbb P \in \mathcal P$. - $(\mathsf{GR}^{\mathcal{P}}_{<\kappa})$: Suppose that \mathcal{T} is any class of topological structures s.t. all $\mathfrak{A} \in \mathcal{T}$ is of character $<\kappa$ (as topological space). Then, for any Σ_1 property P of elements of \mathcal{T} , if $\mathfrak{A} \in \mathcal{T}$ is \mathcal{P} -indestructibly $\neg P$, there are stationarily many (topological) substructures \mathfrak{B} of \mathfrak{A} of size $<\kappa$ which is also \mathcal{P} -indestructibly $\neg P$. - **Cor. 17A.** Suppose that κ is tightly \mathcal{P} -Lever-gen. ultrahuge for one of the "typical" classes \mathcal{P} of p.o.s on the previous slide. Then $\mathsf{GR}^{\mathcal{P}}_{\kappa_{\mathsf{teff}}}$ holds. - Proof. Similarly to Cor. 17. (Cor. 17A) ➤ Note that reflection statements of Thm.10., Thm.12 are special cases of Cor.17A - An inner model \overline{W} of V is said to be a bedrock if it is the minimal ground. - **Thm. 18** ([S.F.&Usuba]). Suppose that κ is tightly \mathcal{P} -gen. hyperhuge (this is stronger than tightly \mathcal{P} -gen. ultrahuge), then there is a bedrock and κ is a hyperhuge cardinal in the bedrock. - **Cor. 19** ([S.F.&Usuba]). For a natural class \mathcal{P} (as in the three instances of Thm. 10) of p.o.s the following statements are equiconsistent ((a) \Rightarrow (b) and (a) \Rightarrow (c) are implications): - (a) $\kappa = \kappa_{\mathfrak{refl}}$ is tightly $\mathcal{P} ext{-Laver-gen.}$ hyperhuge. - (b) There is a κ which is tightly \mathcal{P} -gen. hyperhuge. - (c) $\kappa_{\mathfrak{refl}}$ is hyperhuge in the bedrock of V. - (d) There is a hyperhuge cardinal. ▶ For most of the notions of large large cardinals, The tightly \mathcal{P} -Laver-gen. large cardinal axiom (the axiom asserting the existence of such a cardinal) does not imply the full (\mathcal{P}, \emptyset) -RcA. — Theorem 5.11 in [S.F. ∞] [S.F. ∞] S.F., Maximality Principles and Resurrection Axioms under a Laver-generic large cardinal, preprint, https://fuchino.ddo.jp/papers/RIMS2022-RA-MP-x.pdf **Thm. 20** ([S.F.&Usuba]). Suppose that $\mathcal P$ is iterable class of p.o.s and κ is tightly super $C^{(\infty)}$ - $\mathcal P$ -Laver-gem. ultrahuge cardinal. Then $(\mathcal P,\mathcal H(\kappa))$ -RcA holds. \uparrow definition: on the blackboard \to **Thm. 20** ([S.F.&Usuba]). Suppose that \mathcal{P} is iterable class of p.o.s and κ is tightly super $C^{(\infty)}$ - \mathcal{P} -Laver-gem. ultrahuge cardinal. Then $(\mathcal{P},\mathcal{H}(\kappa))$ -RcA holds. \uparrow definition: on the blackboard \rightarrow **Proof.** Similarly to the proof of Thm. 16. (Thm. 20) **Thm. 21** ([S.F.&Usuba]). Let \mathcal{P} be as above. Then the following statements are equiconsistent. Their consistency follows from a 2-huge cardinal: - (a) $\kappa = \kappa_{\mathfrak{refl}}$ is tightly super $C^{(\infty)}$ \mathcal{P} -Laver-gen. hyperhuge cardinal. - (b) κ_{refl} is super $C^{(\infty)}$ -hyperhuge in the bedrock of V. **Proof.** By (the proof of) Thm. 18. (Thm. 22) **Open problem.** Can "hyperhuge" in Thm. 18 (and Cor. 19, Thm. 21) be replaced by "ultrahuge" (or by "superhuge" or even by "super almost-huge")? — for genuine large cardinals "hyperhuge" can be replaced by "extendible" by a result of Usuba. #### The Higher Infinite #### Two Lemmas in connection with generic large cardinals **Lemma A1.** (Proposition 22.4 in [higher-infinite]) Suppose that U is an ω_1 -complete ultrafilter over a set S and $j: V \xrightarrow{\sim}_{\kappa} M$ is the elementary embedding induced from U then for any cardincal γ , $j''\gamma \in M$ if and only if ${}^{\gamma}M \subseteq M$. **Lemma A2.** (Lemma 2.5 in S.F., Rodrigues and Sakai [II]) Suppose that \mathbb{G} is a (V,\mathbb{P}) -generic filter for a p.o. $\mathbb{P} \in V$, and $j:V \xrightarrow{\preceq} M \subseteq V[\mathbb{G}]$ is s.t., for cardinals κ , λ in V with $\kappa \leq \lambda$, $crit(j) = \kappa$ and $j''\lambda \in M$. - (1) For any set $A \in V$ with $V \models |A| \le \lambda$, we have $j''A \in M$. - (2) $j \upharpoonright \lambda, j \upharpoonright \lambda^2 \in M.$ - (3) For any $A \in V$ with $A \subseteq \lambda$ or $A \subseteq \lambda^2$ we have $A \in M$. - (4) $(\lambda^+)^M \ge (\lambda^+)^V$, Thus, if $(\lambda^+)^V = (\lambda^+)^{V[\mathbb{G}]}$, then $(\lambda^+)^M = (\lambda^+)^V$. - (5) $\mathcal{H}(\lambda^+)^{\mathsf{V}} \subseteq M$. - (6) $j \upharpoonright A \in M$ for all $A \in \mathcal{H}(\lambda^+)^{\mathsf{V}}$.