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Downward Lowenheim-Skolem Theorem for First-Order Logic  Magds Theen (2117

» Notation: A structure 2l is a (first-order) structure of
countable signature (if not mentioned otherwise).

> For a structure 2, we denote with |2(| the underlying set of 2, and
|2(|| the cardinality (of the underlying set) of 2.

Cf.. if X is a set, we denote with | X | the cardinality of X.

Theorem 1. (Downward Léwenheim-Skolem Theorem) For any un-
countable cardinal x and a structure 2 (of countable signature) if
S C || is of cardinality <k, then there is B < A s.t. S C |B|
and [|B|| < k. i)



Lowenheim-Skolem Spectrum of a Logic Mg’ Tegen (3/17)

» Let £ be a logic with a notion <, of elementary substructure. The
Lowenheim-Skolem spectrum of the logic £ is defined as:

LSS(L) := {u € Card : for any structure 2 of a countable signature
and S C || with |S]| < p,
there is B <, A s.t. S C |B| and ||B| < p}-

> Denoting the first-order logic with L, (the classical) Downward
Léwenheim-Skolem Theorem can be reformulated as:

Theorem 2. LSS(L) = {x € Card : kK > N1 }.

Lemma 2a. For a logic £ (with natural properties expected to a
“logic"), we have

LSS(L) = {u € Card : for any structure 2 with a signature of
size < p, there is B <, A s.t. | B < p}.



LSS(ﬁ) is closed Magidors Theoem (4/17)

Lemma 2b. For any logic £, LSS(L) is a closed class of cardinals.

Proof. Suppose that (k. : o < d) is a strictly increasing sequence
in LSS(£) and k = sup,.s5 k. We want to show that x € LSS(L).

» Suppose that 2l is a structure and S C [ |2 |<". Let o < § be s.t.
| S| < Kq. Since ko € LSS(L), thereisa B <, A s.t. S C B
and ||B|| < Ko < k. This shows that k € LSS(L). (Lemma 2b)



Lowenheim-Skolem Spectrum of some non-first-order logics  Magd's Theen (5/17)

> Let L(Q) be the logic obtained from the first-order logic by adding
a new unary (first-order) quantifier Q.
Interpretation: @x ... < '"there are uncountably many x s.t. ...".
> The proof of the following theorem was given in my previous talk at
Tokyo Model Theory Seminar (see the [slides of the talk]):

Theorem 3.LSS(L(Q)) = {x € Card : k > N, }.

» £50. is the monadic second order logic whose second-order variables
run over countable subsets of the underlying set of the structure,
with new quantifier with the quantification stat\X/ whose interpretation
is “there are stationarily many X s.t...." second-order variable
In my next talk, | will present some results about LSS(£X,). E.g.:

Theorem 4. (see Fuchino, Ottenbreit Maschio Rodrigues, and Sakai [2021])

For any n € N, n > 2, the statement “N, = min LSS(£X2,)" is
independent from ZFC (modulo a large cardinal).


https://sites.google.com/view/tokyo-model-theory-seminar/%E3%83%9B%E3%83%BC%E3%83%A0
https://fuchino.ddo.jp/slides/tokyo-fuchino-2022-05-18-pf.pdf#page=6
https://link.springer.com/article/10.1007/s00153-020-00751-6

Full second order logic MogiorsTheen (6/17)

» L' denotes the (monadic, full) second-order logic with second-order
variables X, Y, Z etc. running over all subsets of the underlying set
of a structure. In addition to the constructs of the first-order logic,
we have the symbol ¢ as a logical binary predicate and allow the
expression “x ¢ X" for a first order variable x and a second-order
variable X as an atomic formula. We also allow the quantification
of the form “3X" (and its dual “VX") over the second-order variables X.

> The relation symbol ¢ is interpreted as the (real) element relation
and the interpretation of the quantifier 3X in £l is defined by:

A = IX(0, ) am—1, Boy ooy Bno1, X) =
there exists a B € P(|2]) s.t. A = (a0, .--» am—1, Bo, ..., Bn—1, B)

for a first-order structure 2, an £"-formula ¢ in the signature of
the structure 2 with ¢ = ¢(xo, ..., Xm-1, X0, ---, Xn—1, X) where
X0, .-y Xm—1 and Xg, ..., Xp—_1, X are first- and second-order vari-
ables, ag, ..., am—1 € ||, and By, ..., Bp—1 € P(|2]).



Full second order |OgiC (2/6) Magido's Theorem (7/17)

B < A & B E p(bo,..., bp—1) holds if and only if A =
©(bo, ..., ba—1) holds for all formulas ¢ = ¢(xo, ...) in LI without
free second-order variables, and for all by, ..., b,—1 € |*B]|.

> Exclusion of second-order free variables and parameters in this
context is natural because of the following trivial example:

Example 5. Let B G A Let B = |B|. Then
2 = 3Ix (x gB) but B = —-3Ix (x gB).

Theorem 6. (M. Magidor [1971])
LSS(£Y) = {x : & is supercompact, or a limit of supercompact cardinals}.

» A cardinal x is supercompact if, for any A > k, there are transitive
class M and elementary embedding j : V — M s.t. k is the smallest
ordinal moved by j (critical point of j: we denote these conditions
asj:V 5. M), j(k) > X and [M]* C M. Back to the proof of Proposition 12.


https://link.springer.com/article/10.1007/BF02771565

Full second order logic (3/6) Mg’ Thxen (8/17)

Back to "A slight modification of ..."

Theorem 6. (M. Magidor [1971])
LSS(£M) = {k : & is supercompact, or a limit of supercompact cardinals}.

Proof. “2": Since LSS(£LM) is closed (Lemma 2b), it is enough
to prove that supercompact cardinals belong to LSS(£™).

» Suppose that « is supercompact and 2l a structure in a countable signa-
ture. W.l.o.g., |2 is a cardinal A\g < A and let S C [Ao]<" (=[ [2] ]=")

> Letj:V 5, Mbes.t. j(x) > A and [M]* C M.
> Then 26, j(2A) [ /"o, j [ do €M, MEj[Ao:23 ()" and
P>V =P(|1A)M.  For any L'-formula ¢ = ¢(xo, ...) without
free second order variables, and any ag, ... € |2,
M= () E o(i(a), ) & V2 o(a, .
& MEAE@p(a,...) < MEjR) 7" Ee(ilao), )
> Thus M E () [ j" o <, j(2),
/(20 T ol <j(k), J(8) ="S S Li(A) 15" Aol
> By elementarity, V |= there is B <, n A s.t. S C |B] and ||B]| < k.


https://link.springer.com/article/10.1007/BF02771565

Full second order Iogic (4/6) Magidors Theoem (3/17)

Theorem 6. (M. Magidor [1971])

LSS(£M) = {k : k is supercompact, or a limit of supercompact cardinals}.

“C" The proof of this direction uses the following characterization of
supercompact cardinals by Magidor:

Theorem 7. (M. Magidor [1971], see Theorem 22.10 [Kanamori])
A cardinal k is supercompact

& for class many ¢ > k, there is a < k with e : V, i>5 Vetw
fora d < as.t. e(d) = k.

Back to p.11


https://link.springer.com/article/10.1007/BF02771565
https://link.springer.com/article/10.1007/BF02771565
https://link.springer.com/book/10.1007/978-3-540-88867-3

Full second order logic (5/6) Mag's T (10/17)

Theorem 6. (M. Magidor [1971])
LSS(£M) = {k : k is supercompact, or a limit of supercompact cardinals}.

“C" Assume that £ € LSS(L™") and suppose it < k. We have to
show that there is a supercompact cardinal § with © < § < k.

» First, note that there is an £!-sentence ¢* s.t.
> (X,E) E ¢* & E is well-founded and extensional binary relation and
mcol((X, E)) = (V,, €) for some .
For each A\ > &, let A\ = (V)4w, K, €). By the choice of &, there is
By < Ayst. (1) pC [Byal and (2) (Bl < k.


https://link.springer.com/article/10.1007/BF02771565

Full second order logic (6/6) Mg’ Theoen (11/17)

Theorem 6. (M. Magidor [1971])
LSS(L£M) = {x : & is supercompact, or a limit of supercompact cardinals}.
“C" Assume that x € LSS(£') and suppose ;1 < . We have to show
that there is a supercompact cardinal 6 with u < § < k.
» First, note that there is an £'-sentence ¢* s.t.
> (X,E) = ¢* < E is well-founded and extension binary relation and
mcol((X,E)) = (V,, €) for some ~.
For each A\ > &, let 2\ = (Vi1 K, €). By the choice of &, there is
By <en st (1) pC [Bual and (2) B <~

» We have B, \ = ¢ by elementarity and since 2, = ¢*. Hence the
Mostowski collapse of B, 5 is of the form (Vj3,0,€). Let

ey Va 5 B, <,u A, be the inverse of Mostowski collapsing function.
> Then we have e, )\ | 1 = id,, by (1). Hence the critical point ¢, ) of
e, is somewhere between 1 and  (i.e. 1 < 0,0 < K).

I> Since there are only set many such cardinals, there is < ¢ < &
s.t. there are class many A's s.t. §,\ = d;.

» By Theorem 7, it follows that §7; is supercompact. (Theorem 6)


https://link.springer.com/article/10.1007/BF02771565

A slight modification of Magidor's theorem Mgi'sTheem (12/17)

Theorem 6. (M. Magidor [1971])
LSS(£M) = {x :

: K is supercompact, or a limit of supercompact cardinals}.

» The proof of “O" of Theorem 6. actually shows the following:

> Let £HO denote the higher order logic that is the union of nth order
logics for all n € w.

> Note that, if £’ has more expressive power than £ then we have
LSS(L') C LSS(L).

Corollary 8. (M. Magidor [1971])
LSS(£™M) = LSS(L£HO)

= {k : Kk is supercompact, or a limit of supercompact cardinals}.

Proof. LSS(£™) D LSS(£H°) D {k: ---}
<~ <~
by the remark above by a modification of the proof
S5 LSS(EH) of Theorem 6. D"

~— () (Corollary 8)
Theorem 6. “C"


https://link.springer.com/article/10.1007/BF02771565
https://link.springer.com/article/10.1007/BF02771565

The spectrum of compactness numbers of a logic Mgitors Theoren (13/17)
» For a logic £, the compactness spectrum of L is defined as:

CS(L) := {k € Card : for any L-theory T (possibly of an uncountable

signature), of size k, T is satisfiable if and only if
all S € [T]=" are satisfiable}.

» The strong compactness number of a logic £ is defined as:

scn(L) := min({x € Card : for any L-theory T (possibly of an uncountable
signature) of any size, T is satisfiable if and
only if all S € [T]<" are satisfiable)}.

Lemma 9. For a logic £, {k € Card : scn(L) < x} C CS(L).

Proposition 10.

scn(LM) < the smallest extendible cardinal.



The spectrum of compactness numbers of a logic (2/3) MagorsThen (14/17)

Proposition 10. (follows from Theorem 11 below.)

scn(£M) < the smallest extendible cardinal.

» A cardinal  is extendible if, for any > 0, thereis j : V.4, 5. Ve
for some ¢ with 7 < j(k).

» For a cardinal &, Eﬁw is the logic defined like £ but also conjunc-
tion and disjunction of < x many formulas are allowed (while the
number of free variables in such formulas is always kept finite).

Theorem 11. (M. Magidor [1971]), see Theorem 23.4 in [Kanamori]
The following are equivalent for k > w:

(a) k is extendible.

(b) for any LI -theory T*, if all T € [T*]<* are satisfiable, then T*
is also satisfiable.

> &« is the least extendible cardinal = = scn(LY ) > sen(£™).

—~~ :
by Theorem 11


https://link.springer.com/article/10.1007/BF02771565
https://link.springer.com/book/10.1007/978-3-540-88867-3

The spectrum of compactness numbers of a logic (3/3) Magt'sTheen (1517

| will go into more detail of the following theorems in my next
talk on Jun 1.:

Theorem?? 12. (M. Magidor) Let k be the least extendible cardinal.
Then sen(LM) =sen(L}) = .

Theorem 13. If k is o-closed-gen. supercompact, then x € LSS(LLS,,).

Theorem?? 14.
If k is o-closed-gen. super-almost-huge, then scn(ﬁ?{’at) < K.

(Theorem 14 is false in this form: for a correct version of the theorem see the slides of the next talk).

» Note that o-closed-gen. supercompact/super-almost-huge cardinals
can be “small”. For example, N, for any n > X, can be
o-closed-gen. supercompact/super-almost-huge.


https://fuchino.ddo.jp/slides/kobe-fuchino-2022-06-01-pf.pdf

Generically large cardinals Megitors Theoren (16/17)

» For a class P of p.o.s,
A cardinal & is generically supercompact by P (P gen. super-
compact, for short) if, for any A > &k, there is P € P s.t., for a
(V,P)-generic G there are j, M C V[G] with V[G] = : V 3. M,
Jj(k) > Xand j"\ e M.

A cardinal k is generically super-almost-huge by P (P gen. su-
perhuge, for short) if, for any A > k, there is P € P s.t., for a

(V,P)-generic G there are j, M C V[G] with V[G] =/ : V 5. M,
J(k) > Xand j"u e M for all u < j(k).

Theorem 13. If k is o-closed-gen. supercompact, then x € LSS(LLS,).

Theorem?? 14.
If k is o-closed-gen. super-almost-huge, then scn(ﬁ?{’at) < K.

(Theorem 14 is false in this form: for a correct version of the theorem see the slides of the next talk).


https://fuchino.ddo.jp/slides/kobe-fuchino-2022-06-01-pf.pdf
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On the restriction to countable signatures

Lemma 2a. For a logic £ (with natural properties expected to a
“logic"), we have

LSS(L) = {u € Card : for any structure 2 with a signature of
size < p, there is B <, A s.t. | B < u}.

Proof. “C": Suppose that ;1 € LSS(L) and let 2 be a structure
with a signature of size v < . W.l.o.g., we may assume that 2l is a
relational structure and A = (||, Rp.a)ncw o<y Where R, o is an
n-ary relation on |2| for n € w and @ < v. We may also assume,
w.l.o.g., that ||| > pand v C |2|.

> Let R, := Uy {a} X Rpq for each n € w. Let A~ := (|A], Ry)new.
Applying our assumption on p, we find B~ <, 2~ with
B~ <pandv C |B7|. By the last condition, we can
reconstruct a submodel B of 2 from B~ with the same underlying
set and B <, 2.



On the restriction to countable signatures (2/2)

Lemma 2a. For a logic £ (with natural properties expected to a
“logic”), we have

LSS(L) = {u € Card : for any structure 2 with a signature of
size < i, thereis B <, Ast. |B| < p}.

Proof. “C": Suppose that ;1 € LSS(L) and let 2 be a structure
with a signature of size v < . W.l.o.g., we may assume that 2 is
a relational structure and A = (||, Ry o) ncw,a<v Where Ry is an
n-ary relation on || for n € w and a < v. We may also assume,
w.l.o.g., that ||| > pand v C |2|.

Let Ry := Uy fa} X Rno for each n € w. Let A~ := (|2, Rn)new
Applying our assumption on i, we find B~ <, A~ with || B~ < p
and v C [B~|. By the last condition, we can reconstruct an L-
elementary submodel B of 2 from B~ with the same underlying set.

“D" Suppose now that s is in the set on the right side of the
equality. Let 2 be a structure of size > u with a countable
signature, and S € [ || [<H.

Let A" = (2, a),c5. Applying the assumption on 1, we obtain
Bt <, AT of size < 1. Denoting by B the BT reduced to the
original language, we have ||B|| <, S C |B] and B <, 2.

[0 (Lemma 2a)



