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The two “Axioms” in Takeuti's 1999 article Tt kom (2/20)

In the 1999 article [1999], Takeuti discusses Riis’ Axiom [Riis] and
his own Reflection Axiom [Takeuti].

In the following, we examine these axioms and try to put them in
a large continuum context.

[Riis] Sgren Riis, FOM: A proof of not-CH, Sun Sep 13 12:24:49 EDT
(1998).

[Takeuti] Gaishi Takeuti, Hypotheses on power set, Proceedings of
Symposia in Pure Mathematics, Vol.13, Part |, American
Mathematical Society, Providence, R.I., (1971), 439-446.

[1999] 7T RISk (Takeuti, Gaishi), T > & L SE & e iAMRER, %07
£ 3IF—, 19994 5 HE, (1999), 34-37.



Gaishi Takeuti's article in #Ft3+~—

(Sugaku Seminar) in 1999.05
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Taeut's Axiom (3/20)



Riis’” Axiom — The guessing game Tie's hion (4/20)

> I:={reR:0<r<1},
N := the ideal of null sets C T
> We consider the following guessing game between Player | and

Player Il: Player | guesses a real a € II; simultaneously, Player Il
guesses a countable set A € [II]M.

> Player Il wins, if a € A.

» A sequence (A, : r € II) of countable sets is called a Monte Carlo

strategy of Player Il if, for any a € T,
{rel:adA}eN.

> Player Il wins the game as above with the
probability 1, if it chooses a real r € Il randomly
and take A, as its move.

Player Il



Riis’ Axiom Tkt kom (5/20)

» Sgren Riis thought that it is impossible that Player Il has such a
strategy in the game and formulated:

(Riis’ Axiom [Riis]) There is no Monte Carlo st. for Player Il in
the game as in the previous slide.
» Riis’" Axiom has several interesting consequences like:
Theorem 1. (Riis’ Axiom) CH does not hold.
Proof. Suppose CH holds. Let {/, : o € w1} be a filtration of 1.
Let ¢ : T — w a bijection.

> For r € II, let A, = I,(;). Then (A, : r € II) is a Monte Carlo st. for
Player Il in our game. O

[Riis] Sgren Riis, FOM: A proof of not-CH, Sun Sep 13 12:24:49 EDT (1998).
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Riis’ Axiom — A more general setting Tt kom (7/20)
» For ideals /, J C P(II),
(R}): There is a sequence (A, : r € II) of elements of J s.t.,

forany a€ I, we have {rell : ag A} €.

> (A, : r € 1) in the statement of R/ is called a Monte Carlo st. for

> We write "< k" to denote the ideal [I[]<"; N := the ideal of null
sets C II. With this notation

P . <N1
Riis" Axiom < — R/\/ .

» The following monotonicity is trivial:

Lemma 2. Forideals /, /', J, J/CP(I),if | C 1" and J C J', then
R/ = R. O



A characterization of CH The's hiom (8/20)

Theorem 3. (Lajos Soukup) Riii < CH.

Proof. » “<" follows from Theorem 1 (and Lemma 2).

> “=": Assume 2% > N;. Toward a contradiction, suppose that
RS Si holds and let (A, : r € I) be a Monte Carlo st. for

([H]< N1, []I]< Nl)_

> Let (a¢ : £ < wy) be a 1-1 sequence of elements of II. For each
E<wi, Se={rell: a A} is countable. Let

S =Ugcu, S
> Since | S| <Ny < 2%, thereis re I\ S.
But {a¢ : { <wi} C A, Y O (Theorem 3.)

» The same proof shows that

Theorem 4. RSF & 2% <



A characterization of R/
Theorem 5. (Yasuo Yoshinobu) For ideals /, J C P(I),

the principle R,J is equivalent to the following statement:

R/: There is a sequence (E, : a € 1) in I s.t., for any
SeP()\ J, we have | J, 5 E5 =1L

* [Suggestion to the speaker]: Skip the proof

Taeut's Aom (9/20)



A characterization of R/ Tets hio (9/20)

Theorem 5. (Yasuo Yoshinobu) For ideals /, J C P(I),
the principle R,J is equivalent to the following statement:

R/: There is a sequence (E, : a € 1) in I s.t., for any
SeP()\ J, we have | J, 5 E5 =1L

Corollary 6. R/ = cov(I) < non(J).
Proof. Clear by Rf. O (Corollary 6.)

Corollary 7. R/ = cov(J) < non(I)
Proof. » Assume R{ and let (E, : a € II) be a witness for R/
(i,e. E;elforallacTand (*) J,cs Ea =M forall S € P(I) \ J).
» Suppose, for a contradiction, that there is U € P(II) \ / s.t.
(**) U] <cov(d). > FixIsarr,eUwithr,e U\ E..
Forre U letS, ={acll:r,=r}. Since J,.y S =1, there
isrt € Ust S ¢ Jby (**). » U,es, Es =1 by (¥). But
» " ¢ U,es. Ea by the definition of S-. u O (Corollary 7.)



R/ under MA + - CH
Corollary 8. For any x < 2%0,

R = cov(l) <k < 2% and non(l)=2%.
Proof. We have non([l]<*) = x and cov([l[]<*) = 2%°. Thus the
inequalities follow from Corollary 6 and 7. O (Corollary 8.)

Proposition 9. If non(J) = 2% and non(/) = 2% then R} holds.
Proof. Let (I, : a <2“) be a filtration of 1. For a bijection
v:T— 2% and A, = I, for r € TI, the sequence (Ar crell)isa

Toeut' Adiom (10/20)

Monte Carlo st. for (/, J). O (Proposition 9.)
» N :=null ideal; M := meager ideal. Riis’ Axiom
—

Theorem 10. Assume MA + = CH. Then (1) —RX/N:‘, —|RJ<V[N1
Moreover, (2) —\RX/“, —ij” for all k < 280, S~
(3) forall 1, J € {M, N}, we have R}. ek I G NI
Proof. Under MA + —CH we have, non(\N') = cov(N') = non(M)
= cov(M) = 2% > R;. Thus Corollary 8 and Proposition 9 imply
(1)+(2), and (3), respectively. O (Theorem 10.)



Epistemological(?) discussions Te's hiom (11/20)
» Compare the statement of the negation of Riis’ Axiom with that of

Banach-Tarski theorem:

Theorem 11. (Banach - Tarski 1924; Wilson 2005) Unit ball B
in R3 can be partitioned into finitely many pieces, s.t. these pieces
can be moved continuously and isometrically without collision to
each other to be rearranged into two copies of B.

> If R}Nl (the negation of Riis" Axiom) is considered to be “unnatural”,
then Banach-Tarski Theorem must be considered to be even more
unnaturall  >Thus, the standpoint of the interpretation that Riis’

Axiom is “true” should first negate AC!
»» The feeling that —RX[M and ﬂRf\/‘Nl (the Riis" Axiom and its top.

dual) is “natural”, can be seen perhaps as one of the arguments
supporting MA + —CH ?

Problem. What do we obtain if we restrict ourselves to definable (e.g.
projective) Monte Carlo st.s?



Takeuti's Reflection Axioms Tae's hiom (12/20)

Reflection Axiom ([1999]) For any ordinal ap > w; and A C P(w),
there is a transitive set M* s.t.

(1) ap € M*, (2) P(w) & M*, and

(3) <M*7 AN M*a Qp, €, a>0¢€w1 = <V7 A> Qp, €, a>a€w1 .

Axiom in [Cohen] claimed to be one of Takeuti’'s Axioms For
any A C P(w), there is a transitive set M* s.t.

(1) wy € M*, (2) P(w) &€ M*, and

(3) <M*’Am M*7E’a>aewl = <V’ A765a>a€w1 °

[Cohen] Paul E. Cohen, A Large Power Set Axiom, The Journal of Symbolic Logic,
Vol.40, No.1, (1975), 48-54.

[Takeuti] Gaishi Takeuti, Hypotheses on power set, Proceedings of Symposia in
Pure Mathematics, Vol.13, Part |, American Mathematical Society, Providence,
R.I., (1971), 439-446.

[1999] rPushs (Takeuti, Gaishi), F > & A58 L Mgk, Bt I F—,
1999 4E 5 A5, (1999), 34-37.



Significance and problems of Takeuti’'s Axioms Tes Ao (13/20)

» Takeuti's Axioms can be considered as significant since they
represent the intuition that the power set of w is very rich so that it
cannot be captured by all transitive set models even though the
models considered should reflect the full truth of the universe.

» These axioms have a fatal flaw: They are inconsistent in their
original formulation because of the Theorem of Undefinability of the
Truth by Tarski! [CONSISTENCY]

> Besides this problem (which can be avoided by going to a weaker
reflection statement), the condition P(w) ¢ M* (which is
equivalent to P(w) € M* if M* satisfies the powerset axiom) does
not say anything about what P(w) \ M* should be.
[REALS OUTSIDE M*]



[CONSISTENCY] — A consistent version of [Cohen]  Tkishim (14/2)

(Tox) ([Cohen] modified (An axiom schema))
For any formula ¢ = ¢(xo, ..., xe-1) in L_ 5 = {A,€}, and for
any A C P(w), there is a transitive set M* st. (1) k € M*,

(2) P(w) & M*, and

(3) forall ap, ..., p—1 € K, we have
(M*, AN M*, €) = plag, ..., ar—1] < (V, A €) E plag, ..., ap—1].

» Since a parameter can be used as a switch, the axiom (schema)
above is equivalent to the following:
(75 ) (An axiom schema) For any formulas o = ©o(x0, , -+ X¢o—1),
vy Phk—1 = SOk—l(XOa cocyg ng_l_l) in E&A' and for any AC P(w),
there is a transitive set M* s.t. (1) k € M*, (2) P(w) &€ M*,
and, (3’) for all i € k and ag, ..., ay,—1 € K, we have
<M*,A N M*, €> ): (p,'[ag, ...,agl.,l] = <V, A, €> ): (p,'[ao, ...,agl.,l].



[CONSISTENCY] — A consistent version of [Cohen]  Tkishin (15/2)

(Tox) (Takeuti’s Axiom in [Cohen] modified (an axiom schema))
For any formula ¢ = ¢(xo, ..., xe-1) in L_ 5 = {A,€}, and for
any A C P(w), there is a transitive set M* st. (1) k € M*,

(2) P(w) & M*, and,

(3) for all ap, ..., ap—1 € K, we have
(M*, AN M*, €) = plag, ..., ar—1] < (V, A €) E plag, ..., ap—1].

Theorem 12. (ZFC) Ty, is equivalent to x < 2%0.



Concerning [REALS OUTSIDE M*] Tae's hiom (16/20)

(T1.) (A sterngthening of Ty, (an axiom schema)) Suppose
that ¢ = ¢(xo, ..., x¢—1) is an arbitrary formula in 'Cs,A ={A, e}
For any A C P(w) and a c.c.c. p.o. P of size < /;_' there is a
transitive set M* s.t. (1) k € M*,

(2) thereis a p.o. P € M* with P’ 2 IP and an (M*,P')-generic filter
G (e V), and,

(3) for all ap, ..., ap—1 € K, we have
(M*, AN M*, €) = plag, ..., ar—1] < (V, A €) E plag, ..., ap—1].

Theorem 13. (ZFC) Ty is equivalent to MA,,.

Proof. Similarly to the proof of Theorem 12. [0 (Theorem 13.)
Corollary 14. (ZFC) “Ty ., for all w; < k < 280" is equivalent to MA.



A step or two toward a consistent verion of [1999] Taet's o (17/20)

(T2) (A strengthening of T;, (an axiom schema))  Suppose
that ¢ = ¢(xo, ..., x¢—1) is an arbitrary formulain £_ 4 = {A, e}
For any A C P(w), k < 2%, and any c.c.c. p.o. P of size < 2%¢,
there is a transitive set M* s.it. (1) 2% € M*,

(2) thereis a p.o. P’ € M* with P’ = P and an (M*,IP’)-generic filter
G (e V), and,

(3) forall ag, ..., cp_1 € kU {280}, we have
(M*, AN M*, €) = plag, ..., u—1] < (V,A €) | ¢lao, ..., au—1].

Theorem 15. (ZFC + there exists a Laver-generically superhuge
cardinal for c.c.c. p.o.s) T; holds.



A step or two toward a consistent verion of [1999] (2/2) Tos hio (18/20)

(T3) (A strengthening of T, even closer to [1999] (an axiom schema))
Suppose that ¢ = ¢(xo, ..., x¢—1) is an arbitrary formula in
ﬁe,,ﬁ\, ={A,¢c}.
For any A C P(w), k < 2%, o € On\ 2% and any c.c.c. p.o. P
of size < 280, there are ag € On \ « and a transitive set M* s.t.

(1) ag € M*,

(2) thereis a p.o. P’ € M* with P’ 2 IP and an (M*,P')-generic filter
G (e V), and,

(3) forall ag, ..., ap_1 € kU {280 g}, we have

(M*, AN M*, €) E glag,...,ao—1] < (V,A €) E plag, ..., ar—1].

Theorem 16. (ZFC + there exists a Laver-generically superl2
cardinal for c.c.c. p.o.s) T3 holds.

Proof. Similarly to the proof of Theorem 15. O (Theorem 16.)



Conclusions _ Ties Adom (19/20)
» Existence of a Laver-generically large cardinal unifies strong but

“natural” assertions about the largeness of P(w). For the scenario of
very large continuum. This can be expressed with a
Laver-generically large cardinal for c.c.c. p.o.s (or some other
natural class of p.o.s preserving cardinals below the large cardinal):

Theorem 17. (Proposition 2.8 in [11]) Suppose that p is generically
supercompact for c.c.c. p.o.s. Then, (1) SCH holds. (2) there is
an wi-saturated normal filter over P, (A) for all A > p.

Theorem 18. (Theorem 5.7 in [II]) Suppose that p is generically
supercompact for c.c.c. p.o.s. Then, MAT*%(c.c.c.) holds for all

K < w. In particular, we have ﬁRf/Nl and ﬁR/f/lNl, as well as:
RS{ forall 1, J € {N, M} holds.

> If we assume the existence of a Laver-generically superl2 cardinal,
then even a verion of [1999] is integrated into this picture.

[H] S.F., André Ottenbreit Maschio Rodrigues and Hiroshi Sakai,
Strong downward Léwenheim-Skolem theorems for stationary logics, I
— reflection down to the continuum,

to appear in Archive for Mathematical Logic (2021).


https://fuchino.ddo.jp/papers/SDLS-II-x.pdf
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Laver-generic superl2

» A cardinal p is Laver-generically superl2 for a class P of p.o.s, if, for
any A > pand P € P, there are ag > A Q € P, P < Q with
(V,Q)-generic H and j, M C V[H] s.t.

(1) j: M,

(2) crlt(_/) p, ao = j(ao) > j(p) > A,
(3) 1Q] < (),

(4) P, He M and

(5) j"ape M

» | still have to check the following:

Theorem (7) The consistency of the existence of a Laver-generic su-
perl2 cardinal for c.c.c. p.o.s follows from I3.



Size of a Laver-generic large cardinal and the continuum

Lemma Al. (Lemma 2.6 in [Il]) If x is generically measurable for
some p.o. P, then p is regular.

Lemma A2. (Lemma 5.6 in [II]) If u is generically supercompact
by a class P whose elements do not add any reals, then 280 < 4.

Lemma A3. (Lemma 5.5 in [11]) If u is Laver-generically supercom-
pact for a class P containing at least one p.o. adding a reals then
p < 2%,

Lemma A4. (Lemma 5.4 in [11]) If u is Laver-generically supercom-
pact for a class P s.t. all P € P preserve w; and Col(w;,w;) € P,
then p = N,.

Theorem A5. (Theorem 5.8 in [II]) If u is Laver-generically super-
huge for c.c.c. p.o.s, then p = 280

[II] S.F., André Ottenbreit Maschio Rodrigues and Hiroshi Sakai,
Strong downward Léwenheim-Skolem theorems for stationary logics, I

— reflection down to the continuum,
to appear in Archive for Mathematical Logic (2021).


https://fuchino.ddo.jp/papers/SDLS-II-x.pdf

Proof of Theorem 15.

Theorem 15. (ZFC + there exists a Laver-generically superhuge
cardinal for c.c.c. p.o.s) T; holds.

Proof. Assume that there is a Laver-gen. superhuge caredinal p for
c.c.c. p.o.s. Then 1 = 2% . We may assume that ¢ in the assertion
of T, expresses everything we need below.

» Suppose that A C P(w), k < 2% and P = (P, <p) is a c.c.c. p.o. of
size < k. W.l.o.g., the underlying set of P C k.

» Q be ac.c.c. p.o. with P <@, with H, j, M be as in the definition
of Laver-generic superhugeness.

» InV, let M be a transitive set s.t. @ Viony € Mg, @ A, j(1) € M,
@3 ¢ is absolute over M (possible by Montague-Lévy Theorem),
@ | Mg | =j(p) (possible by Léwenheim-Skolem Theorem).

» By the closedness property of M, My = ("M, j"A, €) € M. Let
M3 € M be the transitive collapse of M.

» Then, in M, Mj = (1), (2), (3) of T2 for ¢, j(A), r (< 2%0), j(P).

> By elementarity, there is M* in V satisfying (1), (2), (3) for ¢, A,
K, P. (" Back ]



Laver-generically large cardinals

» A cardinal u is Laver-generically supercompacrt (Laver-generically
superhuge resp.) for a class P of p.o.s, if, for any A > pand P € P,
there are Q € P, P < Q with (V,Q)-generic H and j, M C V[H] s.t.

(1) Jj M,

(2) Crlt(/) f J(p) > A,

(3) 1Qf <j(n).

(4) P, He M and

(B) j"xeM (j"j(n) € M resp.)

» The notion of Laver-generically large cardinals was introduced in
[II] without the condition (3). The large cardinal with the all the
conditions (1)~(5) is called there tightly Laver-generically
supercompact (superhuge resp.).

[II] S.F., André Ottenbreit Maschio Rodrigues and Hiroshi Sakai,
Strong downward Léwenheim-Skolem theorems for stationary Ioglcs Il

— reflection down to the continuum, [ Back
to appear in Archive for Mathematical Logic (2021).
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Proof of Theorem 12.

Theorem 12. (ZFC) Ty, is equivalent to k < 2%,

Proof. “=": Suppose that T, holds and assume, for
contradiction, that 2% < x also holds. Let A C P(w) be a set
coding an enumeration (a, : a < k) of P(w). Let ¢ be an

L. A-formula which capture all the properties used below. Let M*

be the transitive set as in the statement of To,. for this . By the
choice of o, we have, for each o < &

(M*, AN M*,€) = A codes a sequence of reals of length > a.
Since the property “a th element of A contains n” is coded in an
instance of ¢, we have a, € M* for all @ € k. Thus P(w) C M* u

“<". Assume that Kk < 280 Let © be an arbitrary £ A—formu|a and let

a € On\ k be s.t. ¢ reflects over V,, (Montague- Levy Reflection
Theorem). Let My < V,, best. k C M, A€ Mg and | Mj | = k.
Then the transitive collapse M* of M is as desired in the
statement of Ty, for the formula . O (Theorem 12.)



Undefinability of the Truth

Theorem. (Undefinability of the Truth, Tarski (1933)) Suppose
that T is a concretely given theory in a language £ s.t. Diagonal
Lemma can be formulated in £ and is true in T. Then, there is no
L-formula x = x(x) s.t. T+ ¢ <> x(T¢") for all L-sentences ¢
(as far as T is consistent).

» Takeuti's Axiom in the original formulation is inconsistent:

Suppose that Takeuti's Axiom (either the one in [1999] or the
version in [Cohen]) holds then the formula expressing:

There exists an M* as in Takeuti's Axiom and (M*, €) ="y

would be a truth definition. O



A characterization of R/

Theorem 5. (Yasuo Yoshinobu) For ideals /, J C P(II),
the principle R,J is equivalent to the following statement:

R/: There is a sequence (E, : a € T) in I s.t., for any
SeP(l)\ J, we have | J, s Es =IL.

Proof. » “=": Suppose that (A, : r € II) witnesses R.
> Foreachacl, let E,={rel:a¢ A} Then E; € I.

> For S € P(II) \ J, we have (J,.5 Es = II:  Suppose otherwise, and
let r € I\ (J,c5 Ea- Thenforallac S, r  Ea (i.e. ac A,). Thus
S C A,. A contraction to A, € J.

» This shows that (£, : a € II) witnesses R7.



A characterization of R/

Theorem 5. (Yasuo Yoshinobu) For ideals /, J C P(II),

v

the principle R,J is equivalent to the following statement:

R/: There is a sequence (E, : a € T) in I s.t., for any
SeP(l)\ J, we have | J, s Es =IL.

Proof. » “<": Suppose that (E, : a € II) witnesses R;.
Foreachrecl, let A, ={acll : r¢E,}.

A, € J holds for all r € I: Suppose otherwise, i.e. A, & J for
some r € II. By the definition of A,, r & J,cs, Ea- Thisis a
contradiction to the choice of (E, : a € II).

Forallac I, E. :={re Xl : a¢ A} € [: This follows from
El=E,el.

> The equality holds because, r € E), < ad¢ A, (& r € Ey).

This shows that (A, : r € II) is a wittess of R/. [ (Theorem 5)
| Back ]



