Monte Carlo Strategies for Guessing Games and Takeuti's Reflection Axiom

Sakaé Fuchino (渕野 昌)

Kobe University, Japan

https://fuchino.ddo.jp/index.html

(2021年05月26日(18:26 JST) version)

2021 年 03 月 09 日 (JST, 於 Set-theory zoom conference in Kobe) This presentation is typeset by upLATEX with beamer class, and given on UP2 Version 2.0.0 by Ayumu Inoue in ipad pro (10.5inch).

The most up-to-date version of these slides is downloadable as https://fuchino.ddo.jp/slides/kobe-workshop-2021-pf.pdf This research is supported by Kakenhi Grant-in-Aid for Scientific Research (C) 20K03717

The two "Axioms" in Takeuti's 1999 article

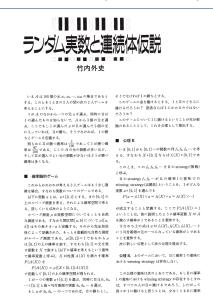
Takeuti's Axiom (2/20)

In the 1999 article [1999], Takeuti discusses Riis' Axiom [Riis] and his own Reflection Axiom [Takeuti].

In the following, we examine these axioms and try to put them in a large continuum context.

- [Riis] Søren Riis, FOM: A proof of not-CH, Sun Sep 13 12:24:49 EDT (1998).
- [Takeuti] Gaishi Takeuti, Hypotheses on power set, Proceedings of Symposia in Pure Mathematics, Vol.13, Part I, American Mathematical Society, Providence, R.I., (1971), 439–446.
- [1999] 竹内外史 (Takeuti, Gaishi), ランダム実数と連続体仮説, 数学 セミナー, 1999 年 5 月号, (1999), 34-37.

Gaishi Takeuti's article in 数学セミナー (Sugaku Seminar) in 1999.05



Takeuti's Axiom (3/20)

Riis' Axiom — The guessing game

 $\blacktriangleright \ \mathbb{I} := \{ r \in \mathbb{R} : 0 \le r \le 1 \},$

 $\mathcal{N}:=\mathsf{the}\;\mathsf{ideal}\;\mathsf{of}\;\mathsf{null}\;\mathsf{sets}\subseteq \mathrm{I\!I}.$

- \triangleright We consider the following guessing game between Player I and Player II: Player I guesses a real $a \in II$; simultaneously, Player II guesses a countable set $A \in [II]^{\aleph_0}$.
- \triangleright Player II wins, if $a \in A$.
- A sequence ⟨A_r : r ∈ II⟩ of countable sets is called a Monte Carlo strategy of Player II if, for any a ∈ II,

 $\{r\in \mathbb{I}: a\notin A_r\}\in \mathcal{N}.$

▷ Player II wins the game as above with the probability 1, if it chooses a real $r \in II$ randomly and take A_r as its move.

Player II

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへつ

Riis' Axiom

Takeuti's Axiom (5/20)

・ロト ・ 日 ・ モ ト ・ モ ・ うへつ

Søren Riis thought that it is impossible that Player II has such a strategy in the game and formulated:

(Riis' Axiom [Riis]) There is no Monte Carlo st. for Player II in the game as in the previous slide.

▶ Riis' Axiom has several interesting consequences like:

Theorem 1. (Riis' Axiom) CH does not hold.

Proof. Suppose CH holds. Let $\{I_{\alpha} : \alpha \in \omega_1\}$ be a filtration of II. Let $\iota : \mathbb{I} \to \omega_1$ a bijection.

▷ For $r \in II$, let $A_r = I_{\iota(r)}$. Then $\langle A_r : r \in II \rangle$ is a Monte Carlo st. for Player II in our game.

[Riis] Søren Riis, FOM: A proof of not-CH, Sun Sep 13 12:24:49 EDT (1998).

Riis' Axiom — A more general setting

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

- ▶ For ideals *I*, $J \subseteq \mathcal{P}(\mathbb{I})$,
- (R^J_I) : There is a sequence $\langle A_r : r \in \mathbb{I} \rangle$ of elements of J s.t., for any $a \in \mathbb{I}$, we have $\{r \in \mathbb{I} : a \notin A_r\} \in I$.
- $\triangleright \langle A_r : r \in II \rangle$ in the statement of R^J_I is called a Monte Carlo st. for (I, J).
- ▶ We write "< κ " to denote the ideal $[{\rm II}]^{<\,\kappa}$; $\mathcal{N}:=$ the ideal of null sets \subseteq II. With this notation

Riis' Axiom $\Leftrightarrow \neg \mathsf{R}^{<\aleph_1}_{\mathcal{N}}$.

▶ The following monotonicity is trivial:
 Lemma 2. For ideals *I*, *I'*, *J*, *J'* ⊆ *P*(II), if *I* ⊆ *I'* and *J* ⊆ *J'*, then
 R^J_I ⇒ R^{J'}_{I'}.

A characterization of CH

Theorem 3. (Lajos Soukup) $\mathsf{R}_{<\aleph_1}^{<\aleph_1} \Leftrightarrow \mathsf{CH}.$

Proof. \blacktriangleright " \Leftarrow " follows from Theorem 1 (and Lemma 2).

▶ "⇒": Assume $2^{\aleph_0} > \aleph_1$. Toward a contradiction, suppose that $\mathbb{R}^{<\aleph_1}_{<\aleph_1}$ holds and let $\langle A_r : r \in \mathbb{I} \rangle$ be a Monte Carlo st. for $([\mathbb{I}]^{<\aleph_1}, [\mathbb{I}]^{<\aleph_1}).$

- $\vdash \text{ Let } \langle a_{\xi} : \xi < \omega_1 \rangle \text{ be a 1-1 sequence of elements of } \mathbb{I}. \text{ For each } \\ \xi < \omega_1, S_{\xi} = \{r \in \mathbb{I} : a_{\xi} \notin A_r\} \text{ is countable. Let } \\ S = \bigcup_{\xi < \omega_1} S_{\xi}.$
- $\begin{array}{l} \triangleright \ \ \text{Since} \ | \ S \ | \ \leq \aleph_1 < 2^{\aleph_0}, \ \text{there is} \ r \in \mathbb{I} \setminus S. \\ \text{But} \ \{a_{\xi} \ : \ \xi < \omega_1\} \subseteq A_r. \qquad \checkmark \qquad \Box \ (\text{Theorem 3.}) \end{array}$
- ▶ The same proof shows that

Theorem 4. $\mathsf{R}^{<\kappa}_{<\kappa} \Leftrightarrow 2^{\aleph_0} \leq \kappa$.

A characterization of R_I^J

Takeuti's Axiom (9/20)

Theorem 5. (Yasuo Yoshinobu) For ideals $I, J \subseteq \mathcal{P}(\mathbb{I})$, the principle \mathbb{R}^J_I is equivalent to the following statement:

$$\overline{\mathbb{R}}_{I}^{J}$$
: There is a sequence $\langle E_{a} : a \in \mathbb{I} \rangle$ in I s.t., for any $S \in \mathcal{P}(\mathbb{I}) \setminus J$, we have $\bigcup_{a \in S} E_{a} = \mathbb{I}$.

Proof.

* [Suggestion to the speaker]: Skip the proof

A characterization of R_I^J

Theorem 5. (Yasuo Yoshinobu) For ideals $I, J \subseteq \mathcal{P}(\mathbb{I})$, the principle \mathbb{R}_{I}^{J} is equivalent to the following statement: $\overline{\mathbb{R}}_{I}^{J}$: There is a sequence $\langle E_{a} : a \in \mathbb{I} \rangle$ in I s.t., for any $S \in \mathcal{P}(\mathbb{I}) \setminus J$, we have $\bigcup_{a \in S} E_{a} = \mathbb{I}$.

Corollary 6.
$$R_I^J \Rightarrow cov(I) \le non(J).$$
Proof.Clear by $\overline{R}_I^J.$ \Box (Corollary 6.)

Corollary 7.
$$R_I^J \Rightarrow cov(J) \le non(I)$$

Proof. Assume R_I^J and let $\langle E_a : a \in II \rangle$ be a witness for \overline{R}_I^J
(i.e. $E_a \in I$ for all $a \in II$ and (*) $\bigcup_{a \in S} E_a = II$ for all $S \in \mathcal{P}(II) \setminus J$).
Suppose, for a contradiction, that there is $U \in \mathcal{P}(II) \setminus I$ s.t.
(**) $|U| < cov(J)$. \triangleright Fix $II \ni a \mapsto r_a \in U$ with $r_a \in U \setminus E_a$.
For $r \in U$, let $S_r = \{a \in II : r_a = r\}$. Since $\bigcup_{r \in U} S_r = II$, there
is $r^* \in U$ s.t. $S_{r^*} \notin J$ by (**). $\blacktriangleright \bigcup_{a \in S_{r^*}} E_a = II$ by (*). But
 $r^* \notin \bigcup_{a \in S_{r^*}} E_a$ by the definition of S_{r^*} . η \Box (Corollary 7.)

 R_{I}^{J} under MA + \neg CH Takeuti's Axiom (10/20) **Corollary 8.** For any $\kappa < 2^{\aleph_0}$ $\mathsf{R}_{I}^{<\kappa} \Rightarrow cov(I) \leq \kappa < 2^{\aleph_{0}} \text{ and } non(I) = 2^{\aleph_{0}}$ Proof. We have $non([\mathbb{I}]^{<\kappa}) = \kappa$ and $cov([\mathbb{I}]^{<\kappa}) = 2^{\aleph_0}$. Thus the inequalities follow from Corollary 6 and 7. \Box (Corollary 8.) **Proposition 9.** If $non(J) = 2^{\aleph_0}$ and $non(I) = 2^{\aleph_0}$ then R^J_I holds. Proof. Let $\langle I_{\alpha} : \alpha < 2^{\omega} \rangle$ be a filtration of II. For a bijection $\iota: \mathbb{I} \to 2^{\omega}$ and $A_r = I_{\iota(r)}$, for $r \in \mathbb{I}$, the sequence $\langle A_r : r \in \mathbb{I} \rangle$ is a Monte Carlo st. for (I, J). \Box (Proposition 9.) \blacktriangleright \mathcal{N} := null ideal; \mathcal{M} := meager ideal. Riis' Axiom **Theorem 10.** Assume MA + \neg CH. Then (1) $\neg \mathsf{R}_{\mathcal{N}}^{<\aleph_1}$, $\neg \mathsf{R}_{\mathcal{M}}^{<\aleph_1}$ Moreover, (2) $\neg \mathsf{R}_{\mathcal{N}}^{<\kappa}$, $\neg \mathsf{R}_{\mathcal{M}}^{<\kappa}$ for all $\kappa < 2^{\aleph_0}$. (3) for all $I, J \in \{\mathcal{M}, \mathcal{N}\}$, we have R_{I}^{J} . Proof. Under MA + \neg CH we have, $non(\mathcal{N}) = cov(\mathcal{N}) = non(\mathcal{M})$ $= \operatorname{cov}(\mathcal{M}) = 2^{\aleph_0} > \aleph_1$. Thus Corollary 8 and Proposition 9 imply (1)+(2), and (3), respectively. \Box (Theorem 10.)

・ロト ・ 日 ・ モ ト ・ モ ・ うへつ

Epistemological(?) discussions

- Takeuti's Axiom (11/20)
- Compare the statement of the negation of Riis' Axiom with that of Banach-Tarski theorem:
- **Theorem 11. (Banach Tarski 1924; Wilson 2005)** Unit ball B in \mathbb{R}^3 can be partitioned into finitely many pieces, s.t. these pieces can be moved continuously and isometrically without collision to each other to be rearranged into two copies of B.
- If R_N^{< ℵ1} (the negation of Riis' Axiom) is considered to be "unnatural", then Banach-Tarski Theorem must be considered to be even more unnatural! ▷Thus, the standpoint of the interpretation that Riis' Axiom is "true" should first negate AC!
- ► The feeling that ¬R^{< ℵ1}_N and ¬R^{< ℵ1}_M (the Riis' Axiom and its top. dual) is "natural", can be seen perhaps as one of the arguments supporting MA + ¬CH ?

Problem. What do we obtain if we restrict ourselves to definable (e.g. projective) Monte Carlo st.s?

Takeuti's Reflection Axioms

Reflection Axiom ([1999]) For any ordinal $\alpha_0 > \omega_1$ and $A \subseteq \mathcal{P}(\omega)$, there is a transitive set M^* s.t.

- (1) $\alpha_0 \in M^*$, (2) $\mathcal{P}(\omega) \notin M^*$, and
- (3) $\langle M^*, A \cap M^*, \alpha_0, \in, \alpha \rangle_{\alpha \in \omega_1} \equiv \langle V, A, \alpha_0, \in, \alpha \rangle_{\alpha \in \omega_1}$.

Axiom in [Cohen] claimed to be one of Takeuti's Axioms For any $A \subseteq \mathcal{P}(\omega)$, there is a transitive set M^* s.t.

(1)
$$\omega_1 \in M^*$$
, (2) $\mathcal{P}(\omega) \notin M^*$, and

(3) $\langle M^*, A \cap M^*, \in, \alpha \rangle_{\alpha \in \omega_1} \equiv \langle V, A, \in, \alpha \rangle_{\alpha \in \omega_1}$.

[Cohen] Paul E. Cohen, A Large Power Set Axiom, The Journal of Symbolic Logic, Vol.40, No.1, (1975), 48–54.

[Takeuti] Gaishi Takeuti, Hypotheses on power set, Proceedings of Symposia in Pure Mathematics, Vol.13, Part I, American Mathematical Society, Providence, R.I., (1971), 439–446.

[1999] 竹内外史 (Takeuti, Gaishi), ランダム実数と連続体仮説,数学セミナー,
 1999 年 5 月号, (1999), 34–37.

Takeuti's Axiom (12/20)

Significance and problems of Takeuti's Axioms

- Takeuti's Axioms can be considered as significant since they represent the intuition that the power set of ω is very rich so that it cannot be captured by all transitive set models even though the models considered should reflect the full truth of the universe.
- These axioms have a fatal flaw: They are inconsistent in their original formulation because of the Theorem of Undefinability of the Truth by Tarski! [CONSISTENCY]
- \triangleright Besides this problem (which can be avoided by going to a weaker reflection statement), the condition $\mathcal{P}(\omega) \notin M^*$ (which is equivalent to $\mathcal{P}(\omega) \nsubseteq M^*$ if M^* satisfies the powerset axiom) does not say anything about what $\mathcal{P}(\omega) \setminus M^*$ should be.

[REALS OUTSIDE M*]

[CONSISTENCY] — A consistent version of [Cohen] Taken's Axion (14/20)

(*T*_{0,κ}) ([Cohen] modified (An axiom schema)) For any formula φ = φ(x₀, ..., x_{ℓ-1}) in L_{ε,A} = {A,ε}, and for any A ⊆ P(ω), there is a transitive set M* s.t. (1) κ ∈ M*,
(2) P(ω) ∉ M*, and
(3) for all α₀, ..., α_{ℓ-1} ∈ κ, we have ⟨M*, A ∩ M*, ∈⟩ ⊨ φ[α₀, ..., α_{ℓ-1}] ⇔ ⟨V, A, ∈⟩ ⊨ φ[α₀, ..., α_{ℓ-1}].

Since a parameter can be used as a switch, the axiom (schema) above is equivalent to the following:

 $\begin{array}{l} (\mathcal{T}_{0,\kappa}^{*}) \text{ (An axiom schema)} \text{ For any formulas } \varphi_{0} = \varphi_{0}(x_{0}, ..., x_{\ell_{0}-1}), \\ \dots, \varphi_{k-1} = \varphi_{k-1}(x_{0}, ..., x_{\ell_{k-1}-1}) \text{ in } \mathcal{L}_{\varepsilon,\underline{A}}, \text{ and for any } A \subseteq \mathcal{P}(\omega), \\ \text{there is a transitive set } M^{*} \text{ s.t. } (1) \ \kappa \in M^{*}, \quad (2) \ \mathcal{P}(\omega) \notin M^{*}, \\ \text{and, } (3') \text{ for all } i \in k \text{ and } \alpha_{0}, ..., \alpha_{\ell_{i}-1} \in \kappa, \text{ we have} \\ \langle M^{*}, A \cap M^{*}, \in \rangle \models \varphi_{i}[\alpha_{0}, ..., \alpha_{\ell_{i}-1}] \ \Leftrightarrow \langle \mathsf{V}, A, \in \rangle \models \varphi_{i}[\alpha_{0}, ..., \alpha_{\ell_{i}-1}]. \end{array}$

[CONSISTENCY] — A consistent version of [Cohen] Takeui's Axim (15/20)

(T_{0,κ}) (Takeuti's Axiom in [Cohen] modified (an axiom schema)) For any formula φ = φ(x₀,..., x_{ℓ-1}) in L_{ε,A} = {A,ε}, and for any A ⊆ P(ω), there is a transitive set M* s.t. (1) κ ∈ M*,
(2) P(ω) ∉ M*, and,
(3) for all α₀,..., α_{ℓ-1} ∈ κ, we have ⟨M*, A ∩ M*, ∈⟩ ⊨ φ[α₀,..., α_{ℓ-1}] ⇔ ⟨V, A, ∈⟩ ⊨ φ[α₀,..., α_{ℓ-1}].

Theorem 12. (ZFC) $T_{0,\kappa}$ is equivalent to $\kappa < 2^{\aleph_0}$.

Concerning [REALS OUTSIDE M*]

($T_{1,\kappa}$) (A sterngthening of $T_{0,\kappa}$ (an axiom schema)) Suppose that $\varphi = \varphi(x_0, ..., x_{\ell-1})$ is an arbitrary formula in $\mathcal{L}_{\varepsilon,\underline{A}} = \{\underline{A}, \varepsilon\}$. For any $A \subseteq \mathcal{P}(\omega)$ and a c.c.c. p.o. \mathbb{P} of size $\leq \kappa$, there is a transitive set M^* s.t. (1) $\kappa \in M^*$,

(2) there is a p.o. $\mathbb{P}' \in M^*$ with $\mathbb{P}' \cong \mathbb{P}$ and an (M^*, \mathbb{P}') -generic filter $\mathbb{G} \ (\in \mathsf{V})$, and,

(3) for all
$$\alpha_0, ..., \alpha_{\ell-1} \in \kappa$$
, we have
 $\langle M^*, A \cap M^*, \epsilon \rangle \models \varphi[\alpha_0, ..., \alpha_{\ell-1}] \iff \langle \mathsf{V}, A, \epsilon \rangle \models \varphi[\alpha_0, ..., \alpha_{\ell-1}]$

Theorem 13. (ZFC) $T_{1,\kappa}$ is equivalent to MA_{κ}.

Proof. Similarly to the proof of Theorem 12. \Box (Theorem 13.) Corollary 14. (ZFC) " $T_{1,\kappa}$ for all $\omega_1 \leq \kappa < 2^{\aleph_0}$ " is equivalent to MA.

Takeuti's Axiom (16/20)

A step or two toward a consistent verion of [1999]

(72) (A strengthening of
$$T_{1,\kappa}$$
 (an axiom schema)) Suppose
that $\varphi = \varphi(x_0, ..., x_{\ell-1})$ is an arbitrary formula in $\mathcal{L}_{\varepsilon,\underline{A}} = \{\underline{A}, \varepsilon\}$.
For any $A \subseteq \mathcal{P}(\omega), \ \kappa < 2^{\aleph_0}$, and any c.c.c. p.o. \mathbb{P} of size $\leq 2^{\aleph_0}$,
there is a transitive set M^* s.t. (1) $2^{\aleph_0} \in M^*$,

Takeuti's Axiom (17/20)

- (2) there is a p.o. $\mathbb{P}' \in M^*$ with $\mathbb{P}' \cong \mathbb{P}$ and an (M^*, \mathbb{P}') -generic filter $\mathbb{G} \ (\in \mathsf{V})$, and,
- (3) for all $\alpha_0, ..., \alpha_{\ell-1} \in \kappa \cup \{2^{\aleph_0}\}$, we have $\langle M^*, A \cap M^*, \in \rangle \models \varphi[\alpha_0, ..., \alpha_{\ell-1}] \iff \langle V, A, \in \rangle \models \varphi[\alpha_0, ..., \alpha_{\ell-1}].$

Theorem 15. (ZFC + there exists a Laver-generically superhuge cardinal for c.c.c. p.o.s) T_2 holds.

Proof.

A step or two toward a consistent verion of [1999] (2/2) Takeut's Axion (18/20)

 (T_3) (A strengthening of T_2 even closer to [1999] (an axiom schema)) Suppose that $\varphi = \varphi(x_0, ..., x_{\ell-1})$ is an arbitrary formula in $\mathcal{L}_{\varepsilon,\mathcal{A}} = \{\underline{A},\varepsilon\}.$ For any $A \subseteq \mathcal{P}(\omega)$, $\kappa < 2^{\aleph_0}$, $\alpha \in \mathsf{On} \setminus 2^{\aleph_0}$ and any c.c.c. p.o. \mathbb{P} of size $\leq 2^{\aleph_0}$, there are $\alpha_0 \in On \setminus \alpha$ and a transitive set M^* s.t. (1) $\alpha_0 \in M^*$, (2) there is a p.o. $\mathbb{P}' \in M^*$ with $\mathbb{P}' \cong \mathbb{P}$ and an (M^*, \mathbb{P}') -generic filter $\mathbb{G} \ (\in \mathsf{V}), \text{ and},$ (3) for all $\alpha_0, \ldots, \alpha_{\ell-1} \in \kappa \cup \{2^{\aleph_0}, \alpha_0\}$, we have $\langle M^*, A \cap M^*, \in \rangle \models \varphi[\alpha_0, ..., \alpha_{\ell-1}] \Leftrightarrow \langle V, A, \in \rangle \models \varphi[\alpha_0, ..., \alpha_{\ell-1}].$

Theorem 16. (ZFC + there exists a Laver-generically superl2 cardinal for c.c.c. p.o.s) T_3 holds.

Proof. Similarly to the proof of Theorem 15. \Box (Theorem 16.)

・ロト ・ 日 ・ モ ト ・ モ ・ うへつ

Conclusions

Takeuti's Axiom (19/20)

- Existence of a Laver-generically large cardinal unifies strong but "natural" assertions about the largeness of P(ω). For the scenario of very large continuum. This can be expressed with a Laver-generically large cardinal for c.c.c. p.o.s (or some other natural class of p.o.s preserving cardinals below the large cardinal):
- **Theorem 17.** (Proposition 2.8 in [II]) Suppose that μ is generically supercompact for c.c.c. p.o.s. Then, (1) SCH holds. (2) there is an ω_1 -saturated normal filter over $\mathcal{P}_{\mu}(\lambda)$ for all $\lambda \geq \mu$.
- **Theorem 18. (Theorem 5.7 in [II])** Suppose that μ is generically supercompact for c.c.c. p.o.s. Then, MA^{++ κ}(*c.c.c.*) holds for all $\kappa < \mu$. In particular, we have $\neg R_{\mathcal{N}}^{<\aleph_1}$ and $\neg R_{\mathcal{M}}^{<\aleph_1}$, as well as: $R_{<I}^{<J}$ for all $I, J \in \{\mathcal{N}, \mathcal{M}\}$ holds.
- ► If we assume the existence of a Laver-generically superI2 cardinal, then even a verion of [1999] is integrated into this picture.

Thank you for your attention! ご清聴ありがとうございました.

AMM .

Laver-generic superI2

- A cardinal µ is Laver-generically superl2 for a class P of p.o.s, if, for any λ ≥ µ and ℙ ∈ P, there are α₀ > λ ℚ ∈ P, ℙ ≤ ℚ with (V, ℚ)-generic ℍ and j, M ⊆ V[ℍ] s.t.
- (1) $j: V \xrightarrow{\preccurlyeq} M$,
- (2) $\operatorname{crit}(j) = \mu, \ \alpha_0 = j(\alpha_0) > j(\mu) > \lambda,$
- (3) $|\mathbb{Q}| \leq j(\mu)$,
- (4) $\mathbb{P}, \mathbb{H} \in M$ and
- (5) $j''\alpha_0 \in M$
- ▶ I still have to check the following:

Theorem (?) The consistency of the existence of a Laver-generic superl2 cardinal for c.c.c. p.o.s follows from I3.

Size of a Laver-generic large cardinal and the continuum Lemma A1. (Lemma 2.6 in [II]) If μ is generically measurable for some p.o. \mathbb{P} , then μ is regular.

Lemma A2. (Lemma 5.6 in [II]) If μ is generically supercompact by a class \mathbb{P} whose elements do not add any reals, then $2^{\aleph_0} < \mu$.

- Lemma A3. (Lemma 5.5 in [II]) If μ is Laver-generically supercompact for a class \mathcal{P} containing at least one p.o. adding a reals then $\mu \leq 2^{\aleph_0}$.
- **Lemma A4.** (Lemma 5.4 in [II]) If μ is Laver-generically supercompact for a class \mathcal{P} s.t. all $\mathbb{P} \in \mathcal{P}$ preserve ω_1 and $\operatorname{Col}(\omega_1, \omega_1) \in \mathbb{P}$, then $\mu = \aleph_2$.
- **Theorem A5. (Theorem 5.8 in [II])** If μ is Laver-generically superhuge for c.c.c. p.o.s, then $\mu = 2^{\aleph_0}$.
- S.F., André Ottenbreit Maschio Rodrigues and Hiroshi Sakai, Strong downward Löwenheim-Skolem theorems for stationary logics, II

 reflection down to the continuum, to appear in Archive for Mathematical Logic (2021).
 Control (2021)

Proof of Theorem 15.

Theorem 15. (ZFC + there exists a Laver-generically superhuge cardinal for c.c.c. p.o.s) T_2 holds.

Proof. Assume that there is a Laver-gen. superhuge caredinal μ for c.c.c. p.o.s. Then $\mu = 2^{\aleph_0}$. We may assume that φ in the assertion of \mathcal{T}_2 expresses everything we need below.

- ▶ Suppose that $A \subseteq \mathcal{P}(\omega)$, $\kappa < 2^{\aleph_0}$ and $\mathbb{P} = \langle \mathbb{P}, \leq_{\mathbb{P}} \rangle$ is a c.c.c. p.o. of size $\leq \kappa$. W.l.o.g., the underlying set of $\mathbb{P} \subseteq \kappa$.
- ▶ \mathbb{Q} be a c.c.c. p.o. with $\mathbb{P} \leq \mathbb{Q}$, with \mathbb{H} , *j*, *M* be as in the definition of Laver-generic superhugeness.
- ▶ In V, let M_0^* be a transitive set s.t. ① $V_{2^{\aleph_0}} \subseteq M_0^*$, ② A, $j(\mu) \in M_0^*$, ③ φ is absolute over M_0^* (possible by Montague-Lévy Theorem), ④ $|M_0^*| = j(\mu)$ (possible by Löwenheim-Skolem Theorem).
- By the closedness property of *M*, *M*^{*}₁ = ⟨*j*"*M*^{*}₀, *j*"*A*, ∈⟩ ∈ *M*. Let *M*^{*}₂ ∈ *M* be the transitive collapse of *M*^{*}₀.
- ▶ Then, in $M, M_2^* \models (1), (2), (3)$ of T_2 for $\varphi, j(A), \kappa (< 2^{\aleph_0}), j(\mathbb{P})$. ▷ By elementarity, there is M^* in V satisfying (1), (2), (3) for $\varphi, A, \kappa, \mathbb{P}$.

Laver-generically large cardinals

- A cardinal µ is Laver-generically supercompacrt (Laver-generically superhuge resp.) for a class P of p.o.s, if, for any λ ≥ µ and ℙ ∈ P, there are ℚ ∈ P, ℙ ≤ ℚ with (V, ℚ)-generic ℍ and j, M ⊆ V[ℍ] s.t.
- $(1) \ j: V \xrightarrow{\preccurlyeq} M,$
- (2) $crit(j) = \mu, j(\mu) > \lambda,$
- (3) $|\mathbb{Q}| \leq j(\mu)$,
- (4) $\mathbb{P}, \mathbb{H} \in M$ and
- (5) $j''\lambda \in M$ $(j''j(\mu) \in M$ resp.)
- ► The notion of Laver-generically large cardinals was introduced in [II] without the condition (3). The large cardinal with the all the conditions (1)~(5) is called there tightly Laver-generically supercompact (superhuge resp.).
- S.F., André Ottenbreit Maschio Rodrigues and Hiroshi Sakai, Strong downward Löwenheim-Skolem theorems for stationary logics, II
 reflection down to the continuum, to appear in Archive for Mathematical Logic (2021).

Proof of Theorem 12.

Theorem 12. (ZFC) $T_{0,\kappa}$ is equivalent to $\kappa < 2^{\aleph_0}$.

Proof. " \Rightarrow ": Suppose that $T_{0,\kappa}$ holds and assume, for contradiction, that $2^{\aleph_0} \leq \kappa$ also holds. Let $A \subseteq \mathcal{P}(\omega)$ be a set coding an enumeration $\langle a_{\alpha} : \alpha < \kappa \rangle$ of $\mathbb{P}(\omega)$. Let φ be an $\mathcal{L}_{\varepsilon, \mathcal{A}}\text{-}\mathsf{formula}$ which capture all the properties used below. Let \mathcal{M}^* be the transitive set as in the statement of $T_{0,\kappa}$ for this φ . By the choice of φ , we have, for each $\alpha < \kappa$ $\langle M^*, A \cap M^*, \in \rangle \models A$ codes a sequence of reals of length $> \alpha$. Since the property " α th element of A contains n" is coded in an instance of φ , we have $a_{\alpha} \in M^*$ for all $\alpha \in \kappa$. Thus $\mathcal{P}(\omega) \subseteq M^*$ μ . " \Leftarrow ": Assume that $\kappa < 2^{\aleph_0}$. Let φ be an arbitrary $\mathcal{L}_{\varepsilon, A}$ -formula and let $\alpha \in On \setminus \kappa$ be s.t. φ reflects over V_{α} (Montague-Lévy Reflection Theorem). Let $M_0^* \prec V_\alpha$ be s.t. $\kappa \subseteq M_0^*$, $A \in M_0^*$ and $|M_0^*| = \kappa$. Then the transitive collapse M^* of M_0^* is as desired in the statement of $T_{0,\kappa}$ for the formula φ . \Box (Theorem 12.) **Back** ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Undefinability of the Truth

Theorem. (Undefinability of the Truth, Tarski (1933)) Suppose that T is a concretely given theory in a language \mathcal{L} s.t. Diagonal Lemma can be formulated in \mathcal{L} and is true in T. Then, there is no \mathcal{L} -formula $\chi = \chi(x)$ s.t. $T \vdash \varphi \leftrightarrow \chi(\ulcorner \varphi \urcorner)$ for all \mathcal{L} -sentences φ (as far as T is consistent).

► Takeuti's Axiom in the original formulation is inconsistent:

Suppose that Takeuti's Axiom (either the one in [1999] or the version in [Cohen]) holds then the formula expressing:

There exists an M^* as in Takeuti's Axiom and $\langle M^*, \in \rangle \models \lceil \varphi \rceil$

would be a truth definition.

A characterization of R_i^J

Theorem 5. (Yasuo Yoshinobu) For ideals $I, J \subseteq \mathcal{P}(\mathbb{I})$, the principle \mathbb{R}^J_I is equivalent to the following statement: $\overline{\mathbb{R}}^J_I$: There is a sequence $\langle E_a : a \in \mathbb{I} \rangle$ in I s.t., for any $S \in \mathcal{P}(\mathbb{I}) \setminus J$, we have $\bigcup_{a \in S} E_a = \mathbb{I}$.

Proof. \blacktriangleright " \Rightarrow ": Suppose that $\langle A_r : r \in \mathbb{I} \rangle$ witnesses \mathbb{R}^J_I .

▷ For each $a \in \mathbb{I}$, let $E_a = \{r \in \mathbb{I} : a \notin A_r\}$. Then $E_a \in I$.

▷ For $S \in \mathcal{P}(\mathbb{I}) \setminus J$, we have $\bigcup_{a \in S} E_a = \mathbb{I}$: Suppose otherwise, and let $r \in \mathbb{I} \setminus \bigcup_{a \in S} E_a$. Then for all $a \in S$, $r \notin E_a$ (i.e. $a \in A_r$). Thus $S \subseteq A_r$. A contraction to $A_r \in J$.

▶ This shows that $\langle E_a : a \in \mathbb{I} \rangle$ witnesses $\overline{\mathsf{R}}_I^J$.

A characterization of R_i^J

Theorem 5. (Yasuo Yoshinobu) For ideals $I, J \subseteq \mathcal{P}(\mathbb{I})$, the principle \mathbb{R}^J_I is equivalent to the following statement: $\overline{\mathbb{R}}^J_I$: There is a sequence $\langle E_a : a \in \mathbb{I} \rangle$ in I s.t., for any $S \in \mathcal{P}(\mathbb{I}) \setminus J$, we have $\bigcup_{a \in S} E_a = \mathbb{I}$.

Proof. \blacktriangleright " \Leftarrow ": Suppose that $\langle E_a : a \in \mathbb{I} \rangle$ witnesses $\overline{\mathbb{R}}_I^J$.

- \triangleright For each $r \in \mathbb{I}$, let $A_r = \{a \in \mathbb{I} : r \notin E_a\}$.
- ▷ $A_r \in J$ holds for all $r \in \mathbb{I}$: Suppose otherwise, i.e. $A_r \notin J$ for some $r \in \mathbb{I}$. By the definition of A_r , $r \notin \bigcup_{a \in A_r} E_a$. This is a contradiction to the choice of $\langle E_a : a \in \mathbb{I} \rangle$.
- ▷ For all $a \in \mathbb{I}$, $E'_a := \{r \in \mathbb{I} : a \notin A_r\} \in I$: This follows from $E'_a = E_a \in I$.

 $\vartriangleright \text{ The equality holds because, } r \in E'_a \iff a \notin A_r \ (\Leftrightarrow \ r \in E_a).$

▶ This shows that $\langle A_r : r \in \mathbb{I} \rangle$ is a wittess of \mathbb{R}^J_I . \Box (Theorem 5)

