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The two “Axioms” in Takeuti’s 1999 article Takeuti’s Axiom (2/20)

In the 1999 article [1999], Takeuti discusses Riis’ Axiom [Riis] and
his own Reflection Axiom [Takeuti].
In the following, we examine these axioms and try to put them in
a large continuum context.

[Riis] Søren Riis, FOM: A proof of not-CH, Sun Sep 13 12:24:49 EDT
(1998).

[Takeuti] Gaishi Takeuti, Hypotheses on power set, Proceedings of
Symposia in Pure Mathematics, Vol.13, Part I, American
Mathematical Society, Providence, R.I., (1971), 439–446.

[1999] 竹内外史 (Takeuti, Gaishi)，ランダム実数と連続体仮説，数学
セミナー，1999年 5月号，(1999), 34–37.



















































































Gaishi Takeuti’s article in 数学セミナー (Sugaku Seminar) in 1999.05 Takeuti’s Axiom (3/20)



















































































Riis’ Axiom — The guessing game Takeuti’s Axiom (4/20)

▶ II := {r ∈ R : 0 ≤ r ≤ 1},
N := the ideal of null sets ⊆ II.

▷ We consider the following guessing game between Player I and
Player II: Player I guesses a real a ∈ II; simultaneously, Player II
guesses a countable set A ∈ [II]ℵ0 .

▷ Player II wins, if a ∈ A.

▶ A sequence 〈Ar : r ∈ II〉 of countable sets is called a Monte Carlo
strategy of Player II if, for any a ∈ II,

{r ∈ II : a 6∈ Ar} ∈ N .

▷ Player II wins the game as above with the
probability 1, if it chooses a real r ∈ II randomly
and take Ar as its move.

Player II



















































































Riis’ Axiom Takeuti’s Axiom (5/20)

▶ Søren Riis thought that it is impossible that Player II has such a
strategy in the game and formulated:

(Riis’ Axiom [Riis]) There is no Monte Carlo st. for Player II in
the game as in the previous slide.

▶ Riis’ Axiom has several interesting consequences like:

Theorem 1. (Riis’ Axiom) CH does not hold.

Proof. Suppose CH holds. Let {Iα : α ∈ ω1} be a filtration of II.
Let ι : II → ω1 a bijection.

▷ For r ∈ II, let Ar = Iι(r). Then 〈Ar : r ∈ II〉 is a Monte Carlo st. for
Player II in our game. □

[Riis] Søren Riis, FOM: A proof of not-CH, Sun Sep 13 12:24:49 EDT (1998).



















































































□　　　　　　　　　　　　

https://goo.gl/maps/yxCr2o44jkvCmxSd7


















































































Riis’ Axiom — A more general setting Takeuti’s Axiom (7/20)

▶ For ideals I , J ⊆ P(II),

(RJ
I ): There is a sequence 〈Ar : r ∈ II〉 of elements of J s.t.,

for any a ∈ II, we have {r ∈ II : a 6∈ Ar} ∈ I .

▷ 〈Ar : r ∈ II〉 in the statement of RJ
I is called a Monte Carlo st. for

(I , J).

▶ We write “<κ” to denote the ideal [II]<κ ; N := the ideal of null
sets ⊆ II. With this notation

Riis’ Axiom ⇔ ¬ R<ℵ1
N .

▶ The following monotonicity is trivial:

Lemma 2. For ideals I , I ′, J, J ′ ⊆ P(II), if I ⊆ I ′ and J ⊆ J ′, then
RJ
I ⇒ RJ′

I ′ . □



















































































A characterization of CH Takeuti’s Axiom (8/20)

Theorem 3. (Lajos Soukup) R<ℵ1
<ℵ1

⇔ CH.

Proof. ▶ “⇐” follows from Theorem 1 (and Lemma 2).
▶ “⇒”: Assume 2ℵ0 > ℵ1. Toward a contradiction, suppose that

R<ℵ1
<ℵ1

holds and let 〈Ar : r ∈ II〉 be a Monte Carlo st. for

([II]<ℵ1 , [II]<ℵ1).
▷ Let 〈aξ : ξ < ω1〉 be a 1-1 sequence of elements of II. For each

ξ < ω1, Sξ = {r ∈ II : aξ 6∈ Ar} is countable. Let
S =

⋃
ξ<ω1

Sξ.

▷ Since |S | ≤ ℵ1 < 2ℵ0 , there is r ∈ II \ S .
But {aξ : ξ < ω1} ⊆ Ar . ↯ □ (Theorem 3.)

▶ The same proof shows that

Theorem 4. R<κ
<κ ⇔ 2ℵ0 ≤ κ.



















































































A characterization of RJ
I Takeuti’s Axiom (9/20)

Theorem 5. (Yasuo Yoshinobu) For ideals I , J ⊆ P(II),
the principle RJ

I is equivalent to the following statement:
R̄J
I : There is a sequence 〈Ea : a ∈ II〉 in I s.t., for any

S ∈ P(II) \ J, we have
⋃

a∈S Ea = II.

Proof.

* [Suggestion to the speaker]: Skip the proof



















































































A characterization of RJ
I Takeuti’s Axiom (9/20)

Theorem 5. (Yasuo Yoshinobu) For ideals I , J ⊆ P(II),
the principle RJ

I is equivalent to the following statement:
R̄J
I : There is a sequence 〈Ea : a ∈ II〉 in I s.t., for any

S ∈ P(II) \ J, we have
⋃

a∈S Ea = II.

Corollary 6. RJ
I ⇒ cov(I ) ≤ non(J).

Proof. Clear by R̄J
I . □ (Corollary 6.)

Corollary 7. RJ
I ⇒ cov(J) ≤ non(I )

Proof. ▶ Assume RJ
I and let 〈Ea : a ∈ II〉 be a witness for R̄J

I

(i.e. Ea ∈ I for all a ∈ II and (*)
⋃

a∈S Ea = II for all S ∈ P(II) \ J).
▶ Suppose, for a contradiction, that there is U ∈ P(II) \ I s.t.

(**) |U | < cov(J). ▷ Fix II 3 a 7→ ra ∈ U with ra ∈ U \ Ea.
For r ∈ U, let Sr = {a ∈ II : ra = r}. Since

⋃
r∈U Sr = II, there

is r∗ ∈ U s.t. Sr∗ 6∈ J by (**). ▶
⋃

a∈Sr∗ Ea = II by (*). But
▶ r∗ 6∈

⋃
a∈Sr∗ Ea by the definition of Sr∗ .↯ □ (Corollary 7.)



















































































RJ
I under MA + ¬CH Takeuti’s Axiom (10/20)

Corollary 8. For any κ < 2ℵ0 ,
R<κ
I ⇒ cov(I ) ≤ κ < 2ℵ0 and non(I ) = 2ℵ0 .

Proof. We have non([II]<κ) = κ and cov([II]<κ) = 2ℵ0 . Thus the
inequalities follow from Corollary 6 and 7. □ (Corollary 8.)

Proposition 9. If non(J) = 2ℵ0 and non(I ) = 2ℵ0 then RJ
I holds.

Proof. Let 〈Iα : α < 2ω〉 be a filtration of II. For a bijection
ι : II → 2ω and Ar = Iι(r), for r ∈ II, the sequence 〈Ar : r ∈ II〉 is a
Monte Carlo st. for (I , J). □ (Proposition 9.)

▶ N := null ideal; M := meager ideal.

Theorem 10. Assume MA + ¬CH. Then (1)

Riis’ Axiom︷ ︸︸ ︷
¬R<ℵ1

N , ¬R<ℵ1
M︸ ︷︷ ︸

top. dual of Riis’ AxiomMoreover, (2) ¬R<κ
N , ¬R<κ

M for all κ < 2ℵ0 .
(3) for all I , J ∈ {M,N}, we have RJ

I .
Proof. Under MA + ¬CH we have, non(N ) = cov(N ) = non(M)

= cov(M) = 2ℵ0 > ℵ1. Thus Corollary 8 and Proposition 9 imply
(1)+(2), and (3), respectively. □ (Theorem 10.)



















































































Epistemological(?) discussions Takeuti’s Axiom (11/20)
▶ Compare the statement of the negation of Riis’ Axiom with that of

Banach-Tarski theorem:

Theorem 11. (Banach - Tarski 1924; Wilson 2005) Unit ball B
in R3 can be partitioned into finitely many pieces, s.t. these pieces
can be moved continuously and isometrically without collision to
each other to be rearranged into two copies of B .

▶ If R<ℵ1
N (the negation of Riis’ Axiom) is considered to be “unnatural”,

then Banach-Tarski Theorem must be considered to be even more
unnatural! ▷Thus, the standpoint of the interpretation that Riis’
Axiom is “true” should first negate AC!

▶▶ The feeling that ¬R<ℵ1
N and ¬R<ℵ1

M (the Riis’ Axiom and its top.
dual) is “natural”, can be seen perhaps as one of the arguments
supporting MA + ¬CH ?

Problem. What do we obtain if we restrict ourselves to definable (e.g.
projective) Monte Carlo st.s?



















































































Takeuti’s Reflection Axioms Takeuti’s Axiom (12/20)

Reflection Axiom ([1999]) For any ordinal α0 > ω1 and A ⊆ P(ω),
there is a transitive set M∗ s.t.

(1) α0 ∈ M∗, (2) P(ω) 6∈ M∗, and
(3) 〈M∗,A ∩M∗, α0,∈, α〉α∈ω1 ≡ 〈V,A, α0,∈, α〉α∈ω1 .

Axiom in [Cohen] claimed to be one of Takeuti’s Axioms For
any A ⊆ P(ω), there is a transitive set M∗ s.t.

(1) ω1 ∈ M∗, (2) P(ω) 6∈ M∗, and
(3) 〈M∗,A ∩M∗,∈, α〉α∈ω1 ≡ 〈V,A,∈, α〉α∈ω1 .

[Cohen] Paul E. Cohen, A Large Power Set Axiom, The Journal of Symbolic Logic,
Vol.40, No.1, (1975), 48–54.

[Takeuti] Gaishi Takeuti, Hypotheses on power set, Proceedings of Symposia in
Pure Mathematics, Vol.13, Part I, American Mathematical Society, Providence,
R.I., (1971), 439–446.

[1999] 竹内外史 (Takeuti, Gaishi)，ランダム実数と連続体仮説，数学セミナー，
1999年 5月号，(1999), 34–37.



















































































Significance and problems of Takeuti’s Axioms Takeuti’s Axiom (13/20)

▶ Takeuti’s Axioms can be considered as significant since they
represent the intuition that the power set of ω is very rich so that it
cannot be captured by all transitive set models even though the
models considered should reflect the full truth of the universe.

▶ These axioms have a fatal flaw: They are inconsistent in their
original formulation because of the Theorem of Undefinability of the
Truth by Tarski ! [CONSISTENCY]

▷ Besides this problem (which can be avoided by going to a weaker
reflection statement), the condition P(ω) 6∈ M∗ (which is
equivalent to P(ω) 6⊆ M∗ if M∗ satisfies the powerset axiom) does
not say anything about what P(ω) \M∗ should be.

[REALS OUTSIDE M∗]



















































































[CONSISTENCY] — A consistent version of [Cohen] Takeuti’s Axiom (14/20)

(T0,κ) ([Cohen] modified (An axiom schema))
For any formula φ = φ(x0, ..., xℓ−1) in Lε,A = {A, ε}, and for
any A ⊆ P(ω), there is a transitive set M∗ s.t. (1) κ ∈ M∗,

(2) P(ω) 6∈ M∗, and
(3) for all α0, ...,αℓ−1 ∈ κ, we have

〈M∗,A ∩M∗,∈〉 |= φ[α0, ...,αℓ−1] ⇔ 〈V,A,∈〉 |= φ[α0, ...,αℓ−1].

▶ Since a parameter can be used as a switch, the axiom (schema)
above is equivalent to the following:

(T ∗
0,κ) (An axiom schema) For any formulas φ0 = φ0(x0, , ..., xℓ0−1),

...,φk−1 = φk−1(x0, ..., xℓk−1−1) in Lε,A , and for any A ⊆ P(ω),
there is a transitive set M∗ s.t. (1) κ ∈ M∗, (2) P(ω) 6∈ M∗,
and, (3’) for all i ∈ k and α0, ...,αℓi−1 ∈ κ, we have
〈M∗,A ∩M∗,∈〉 |= φi [α0, ...,αℓi−1] ⇔ 〈V,A,∈〉 |= φi [α0, ...,αℓi−1].



















































































[CONSISTENCY] — A consistent version of [Cohen] Takeuti’s Axiom (15/20)

(T0,κ) (Takeuti’s Axiom in [Cohen] modified (an axiom schema))
For any formula φ = φ(x0, ..., xℓ−1) in Lε,A = {A, ε}, and for
any A ⊆ P(ω), there is a transitive set M∗ s.t. (1) κ ∈ M∗,

(2) P(ω) 6∈ M∗, and,
(3) for all α0, ...,αℓ−1 ∈ κ, we have

〈M∗,A ∩M∗,∈〉 |= φ[α0, ...,αℓ−1] ⇔ 〈V,A,∈〉 |= φ[α0, ...,αℓ−1].

Theorem 12. (ZFC) T0,κ is equivalent to κ < 2ℵ0 .

Proof.



















































































Concerning [REALS OUTSIDE M∗] Takeuti’s Axiom (16/20)

(T1,κ) (A sterngthening of T0,κ (an axiom schema)) Suppose
that φ = φ(x0, ..., xℓ−1) is an arbitrary formula in Lε,A = {A, ε}.
For any A ⊆ P(ω) and a c.c.c. p.o. P of size ≤ κ, there is a
transitive set M∗ s.t. (1) κ ∈ M∗,

(2) there is a p.o. P′ ∈ M∗ with P′ ∼= P and an (M∗,P′)-generic filter
G (∈ V), and,

(3) for all α0, ...,αℓ−1 ∈ κ, we have
〈M∗,A ∩M∗,∈〉 |= φ[α0, ...,αℓ−1] ⇔ 〈V,A,∈〉 |= φ[α0, ...,αℓ−1].

Theorem 13. (ZFC) T1,κ is equivalent to MAκ.

Proof. Similarly to the proof of Theorem 12. □ (Theorem 13.)

Corollary 14. (ZFC) “T1,κ for all ω1 ≤ κ < 2ℵ0” is equivalent to MA.



















































































A step or two toward a consistent verion of [1999] Takeuti’s Axiom (17/20)

(T2) (A strengthening of T1,κ (an axiom schema)) Suppose
that φ = φ(x0, ..., xℓ−1) is an arbitrary formula in Lε,A = {A, ε}.
For any A ⊆ P(ω), κ < 2ℵ0 , and any c.c.c. p.o. P of size ≤ 2ℵ0 ,
there is a transitive set M∗ s.t. (1) 2ℵ0 ∈ M∗,

(2) there is a p.o. P′ ∈ M∗ with P′ ∼= P and an (M∗,P′)-generic filter
G (∈ V), and,

(3) for all α0, ...,αℓ−1 ∈ κ ∪ {2ℵ0}, we have
〈M∗,A ∩M∗,∈〉 |= φ[α0, ...,αℓ−1] ⇔ 〈V,A,∈〉 |= φ[α0, ...,αℓ−1].

Theorem 15. (ZFC + there exists a Laver-generically superhuge
cardinal for c.c.c. p.o.s ) T2 holds.

Proof.



















































































A step or two toward a consistent verion of [1999] (2/2) Takeuti’s Axiom (18/20)

(T3) (A strengthening of T2 even closer to [1999] (an axiom schema))
Suppose that φ = φ(x0, ..., xℓ−1) is an arbitrary formula in
Lε,A = {A, ε}.
For any A ⊆ P(ω), κ < 2ℵ0 , α ∈ On \ 2ℵ0 and any c.c.c. p.o. P
of size ≤ 2ℵ0 , there are α0 ∈ On \ α and a transitive set M∗ s.t.

(1) α0 ∈ M∗,
(2) there is a p.o. P′ ∈ M∗ with P′ ∼= P and an (M∗,P′)-generic filter

G (∈ V), and,
(3) for all α0, ...,αℓ−1 ∈ κ ∪ {2ℵ0 , α0}, we have

〈M∗,A ∩M∗,∈〉 |= φ[α0, ...,αℓ−1] ⇔ 〈V,A,∈〉 |= φ[α0, ...,αℓ−1].

Theorem 16. (ZFC + there exists a Laver-generically superI2
cardinal for c.c.c. p.o.s ) T3 holds.

Proof. Similarly to the proof of Theorem 15. □ (Theorem 16.)



















































































Conclusions Takeuti’s Axiom (19/20)
▶ Existence of a Laver-generically large cardinal unifies strong but

“natural” assertions about the largeness of P(ω). For the scenario of
very large continuum. This can be expressed with a
Laver-generically large cardinal for c.c.c. p.o.s (or some other
natural class of p.o.s preserving cardinals below the large cardinal):

Theorem 17. (Proposition 2.8 in [Ⅱ]) Suppose that µ is generically
supercompact for c.c.c. p.o.s. Then, (1) SCH holds. (2) there is
an ω1-saturated normal filter over Pµ(λ) for all λ ≥ µ.

Theorem 18. (Theorem 5.7 in [Ⅱ]) Suppose that µ is generically
supercompact for c.c.c. p.o.s. Then, MA++κ(c .c .c .) holds for all
κ < µ. In particular, we have ¬R<ℵ1

N and ¬R<ℵ1
M , as well as:

R< J
< I for all I , J ∈ {N ,M} holds.

▶ If we assume the existence of a Laver-generically superI2 cardinal,
then even a verion of [1999] is integrated into this picture.

[Ⅱ] S.F., André Ottenbreit Maschio Rodrigues and Hiroshi Sakai,
Strong downward Löwenheim-Skolem theorems for stationary logics, II

— reflection down to the continuum,
to appear in Archive for Mathematical Logic (2021).

https://fuchino.ddo.jp/papers/SDLS-II-x.pdf


















































































Thank you for your attention!
ご清聴ありがとうございました．
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Laver-generic superI2

▶ A cardinal µ is Laver-generically superI2 for a class P of p.o.s, if, for
any λ ≥ µ and P ∈ P , there are α0 > λ Q ∈ P , P ≤◦ Q with
(V,Q)-generic H and j , M ⊆ V[H] s.t.

(1) j : V
≼→ M,

(2) crit(j) = µ, α0 = j(α0) > j(µ) > λ,
(3) |Q | ≤ j(µ),
(4) P, H ∈ M and
(5) j ′′α0 ∈ M

▶ I still have to check the following:

Theorem (?) The consistency of the existence of a Laver-generic su-
perI2 cardinal for c.c.c. p.o.s follows from I3.

Back



















































































Size of a Laver-generic large cardinal and the continuum
Lemma A1. (Lemma 2.6 in [Ⅱ]) If µ is generically measurable for

some p.o. P, then µ is regular.

Lemma A2. (Lemma 5.6 in [Ⅱ]) If µ is generically supercompact
by a class P whose elements do not add any reals, then 2ℵ0 < µ.

Lemma A3. (Lemma 5.5 in [Ⅱ]) If µ is Laver-generically supercom-
pact for a class P containing at least one p.o. adding a reals then
µ ≤ 2ℵ0 .

Lemma A4. (Lemma 5.4 in [Ⅱ]) If µ is Laver-generically supercom-
pact for a class P s.t. all P ∈ P preserve ω1 and Col(ω1, ω1) ∈ P,
then µ = ℵ2.

Theorem A5. (Theorem 5.8 in [Ⅱ]) If µ is Laver-generically super-
huge for c.c.c. p.o.s, then µ = 2ℵ0 .

[Ⅱ] S.F., André Ottenbreit Maschio Rodrigues and Hiroshi Sakai,
Strong downward Löwenheim-Skolem theorems for stationary logics, II

— reflection down to the continuum,
to appear in Archive for Mathematical Logic (2021).

Back to the proof

https://fuchino.ddo.jp/papers/SDLS-II-x.pdf


















































































Proof of Theorem 15.
Theorem 15. (ZFC + there exists a Laver-generically superhuge

cardinal for c.c.c. p.o.s ) T2 holds.

Proof. Assume that there is a Laver-gen. superhuge caredinal µ for
c.c.c. p.o.s. Then µ = 2ℵ0 . We may assume that φ in the assertion
of T2 expresses everything we need below.

▶ Suppose that A ⊆ P(ω), κ < 2ℵ0 and P = 〈P,≤P〉 is a c.c.c. p.o. of
size ≤ κ. W.l.o.g., the underlying set of P ⊆ κ.

▶ Q be a c.c.c. p.o. with P ≤◦ Q, with H, j , M be as in the definition
of Laver-generic superhugeness.

▶ In V, let M∗
0 be a transitive set s.t. ① V2ℵ0 ⊆ M∗

0 , ② A, j(µ) ∈ M∗
0 ,

③ φ is absolute over M∗
0 (possible by Montague-Lévy Theorem),

④ |M∗
0 | = j(µ) (possible by Löwenheim-Skolem Theorem).

▶ By the closedness property of M, M∗
1 = 〈j ′′M∗

0 , j
′′A,∈〉 ∈ M. Let

M∗
2 ∈ M be the transitive collapse of M∗

0 .
▶ Then, in M, M∗

2 |= (1), (2), (3) of T2 for φ, j(A), κ (< 2ℵ0), j(P).
▷ By elementarity, there is M∗ in V satisfying (1), (2), (3) for φ, A,

κ, P. Back



















































































Laver-generically large cardinals

▶ A cardinal µ is Laver-generically supercompacrt (Laver-generically
superhuge resp.) for a class P of p.o.s, if, for any λ ≥ µ and P ∈ P ,
there are Q ∈ P , P ≤◦ Q with (V,Q)-generic H and j , M ⊆ V[H] s.t.

(1) j : V
≼→ M,

(2) crit(j) = µ, j(µ) > λ,
(3) |Q | ≤ j(µ),
(4) P, H ∈ M and
(5) j ′′λ ∈ M ( j ′′j(µ) ∈ M resp.)

▶ The notion of Laver-generically large cardinals was introduced in
[Ⅱ] without the condition (3). The large cardinal with the all the
conditions (1)～(5) is called there tightly Laver-generically
supercompact (superhuge resp.).

[Ⅱ] S.F., André Ottenbreit Maschio Rodrigues and Hiroshi Sakai,
Strong downward Löwenheim-Skolem theorems for stationary logics, II

— reflection down to the continuum,
to appear in Archive for Mathematical Logic (2021).

Back Back to the proof

https://fuchino.ddo.jp/papers/SDLS-II-x.pdf


















































































Proof of Theorem 12.

Theorem 12. (ZFC) T0,κ is equivalent to κ < 2ℵ0 .

Proof. “⇒”: Suppose that T0,κ holds and assume, for
contradiction, that 2ℵ0 ≤ κ also holds. Let A ⊆ P(ω) be a set
coding an enumeration 〈aα : α < κ〉 of P(ω). Let φ be an
Lε,A -formula which capture all the properties used below. Let M∗

be the transitive set as in the statement of T0,κ for this φ. By the
choice of φ, we have, for each α < κ
〈M∗,A ∩M∗,∈〉 |= A codes a sequence of reals of length > α.
Since the property “α th element of A contains n” is coded in an
instance of φ, we have aα ∈ M∗ for all α ∈ κ. Thus P(ω) ⊆ M∗ ↯.

“⇐”: Assume that κ < 2ℵ0 . Let φ be an arbitrary Lε,A -formula and let
α ∈ On \ κ be s.t. φ reflects over Vα (Montague-Lévy Reflection
Theorem). Let M∗

0 ≺ Vα be s.t. κ ⊆ M∗
0 , A ∈ M∗

0 and |M∗
0 | = κ.

Then the transitive collapse M∗ of M∗
0 is as desired in the

statement of T0,κ for the formula φ. □ (Theorem 12.) Back



















































































Undefinability of the Truth

Theorem. (Undefinability of the Truth, Tarski (1933)) Suppose
that T is a concretely given theory in a language L s.t. Diagonal
Lemma can be formulated in L and is true in T . Then, there is no
L-formula χ = χ(x) s.t. T ` φ ↔ χ(⌜φ⌝) for all L-sentences φ
(as far as T is consistent).

▶ Takeuti’s Axiom in the original formulation is inconsistent:

Suppose that Takeuti’s Axiom (either the one in [1999] or the
version in [Cohen]) holds then the formula expressing:

There exists an M∗ as in Takeuti’s Axiom and 〈M∗,∈〉 |= ⌜φ⌝

would be a truth definition. □

Back



















































































A characterization of RJ
I

Theorem 5. (Yasuo Yoshinobu) For ideals I , J ⊆ P(II),
the principle RJ

I is equivalent to the following statement:
R̄J
I : There is a sequence 〈Ea : a ∈ II〉 in I s.t., for any

S ∈ P(II) \ J, we have
⋃

a∈S Ea = II.

Proof. ▶ “⇒”: Suppose that 〈Ar : r ∈ II〉 witnesses RJ
I .

▷ For each a ∈ II, let Ea = {r ∈ II : a 6∈ Ar}. Then Ea ∈ I .

▷ For S ∈ P(II) \ J, we have
⋃

a∈S Ea = II: Suppose otherwise, and
let r ∈ II \

⋃
a∈S Ea. Then for all a ∈ S , r 6∈ Ea (i.e. a ∈ Ar ). Thus

S ⊆ Ar . A contraction to Ar ∈ J.

▶ This shows that 〈Ea : a ∈ II〉 witnesses R̄J
I .



















































































A characterization of RJ
I

Theorem 5. (Yasuo Yoshinobu) For ideals I , J ⊆ P(II),
the principle RJ

I is equivalent to the following statement:
R̄J
I : There is a sequence 〈Ea : a ∈ II〉 in I s.t., for any

S ∈ P(II) \ J, we have
⋃

a∈S Ea = II.

Proof. ▶ “⇐”: Suppose that 〈Ea : a ∈ II〉 witnesses R̄J
I .

▷ For each r ∈ II, let Ar = {a ∈ II : r 6∈ Ea}.
▷ Ar ∈ J holds for all r ∈ II : Suppose otherwise, i.e. Ar 6∈ J for

some r ∈ II. By the definition of Ar , r 6∈
⋃

a∈Ar
Ea. This is a

contradiction to the choice of 〈Ea : a ∈ II〉.
▷ For all a ∈ II, E ′

a := {r ∈ II : a 6∈ Ar} ∈ I : This follows from
E ′
a = Ea ∈ I .

▷ The equality holds because, r ∈ E ′
a ⇔ a 6∈ Ar (⇔ r ∈ Ea).

▶ This shows that 〈Ar : r ∈ II〉 is a wittess of RJ
I . □ (Theorem 5)

Back


