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Additive functions on R Liea Mgpins (2/10)

» A function f : R — R is said to be additive if
f(a+ b) = f(a) + f(b) holds for all a, b € R.

> If f: R — R is additive, then f is Q-linear.

> If f: R — R is additive and f is discontinuous at one point, then f
is everywhere discontinuous.

> Any monoton f : R — R is discontinuous at most on countably
many points.

Proposition 1. For any additive f : R — R, the following are
equivalent:

(a) fis an R-linear mapping; (b) f is continuous;

(c) f is monotone.



Additive functions on R” Liea Mgpins (3/10)
» For R-linear spaces X, Y, a mapping f : X — Y is said to be
additive if
f(a+b) = f(a) + f(b) holds for all o, b € X.
> If f:R" — R™ is additive, then f is Q-linear.

Proposition 2. For any additive f : R” — R™, the following are
equivalent:

(a) fis an R-linear mapping; (b) f is continuous;

» The condition “(b) f is continuous” in propositions 1, 2 can be still
improved as follows:

Theorem 3. For any additive f : R” — R™, the following are
equivalent:

(a) fis an R-linear mapping; (b) f is continuous;

(¢ ) (Sierpinski) f is a measurable function;
(d) (Steinhaus) f is a Baire function.



ZFC vers. ZF 4+ DC + 7 Liea Mgpins (4/10)
Proposition 4. (ZFC, Hamel) There is a discontinuous additive
function f : R — R.

» Proposition 3. implies the following:

Corollary 5. (ZF + AD) A function f : R" — R™ is a linear
mapping if and only if it is additive.

Corollary 6. ZF + DC + “any function f : R” — R™ is linear
mapping if and only if it is additive” is equiconsistent with ZF.

Proof. By Propositon 3. and Shelah’s “Can you take Solovay's
inaccessible away?"” O



Additive and multiplicative functions on R L Mgy (5/10)

» A function f : R — R is said to be multiplicative if
f(ab) = f(a)f(b) holds for all a, b € R.

Lemma 7. (Kuczma [1], Theorem 14.4.1) Suppose that f : R — R
is additive and multiplicative. Then f is either the constant zero
function or the identity function.

Theorem 8. For R-linear spaces X, Y and an additive mapping
f: X =Y, if there is a function ¢ : R — R s.t.
f(ra) = p(r)f(a) for alla € X and r € R,
then f is an R-linear mapping.
.

[1] Marek Kuczma, An introduction to the theory of functional equations and
inequalities, Second Edition (ed. by Attila Gilanyi), Birkhduser (2009).



Points and lines Lier Mappings (6/10)

» For an R-linear space X, L C X is a line if and only if it is a
1-dimensional affine subspace of X. Thus L is a line if there are @,
beXst L=Ro+b={ro+b:reR}

» P C X is a point if it is a O-dimensional affine subspace of X. That
is, if P is a singleton.

Lemma 9. Suppose that X, Y are R-linear spaces, and f : X — Y
is an R-linear mapping. Then, for each line L C R, f”L is either a
line or a point in Y, and if f”L is a line, then f | L is 1-1.

Lemma 10. For R-linear spaces X, Y, there is a non-linear map-
ping f : X — Y s.t. f(Ox) = Oy, L C X either to a line or to a
point for each line L C X, and f | Lis1-1foraline L C X if f”L
is a line.

A,



An Open Question and a partial Answer L Mgy (7/10)

Problem 11. Suppose that X, Y are R-linear spaces and f : X —
Y. If (1) f(0x) =0y, (2)foranyline L C X, f"Lis either a
point or a line in Y, (3) there are @, b € X s.t. f(a) and f(b)
are independent in Y, does it follow that f is a R-linear mappings?

» The following theorem is often cited as the Fundamental Theorem
of Affine Geometry.

> For R-linear spaces X, Y, g : X — Y is an R-affine mapping if
there are R-linear mapping f : X — Y and b € Y s.t. g is defined
by g(a) = f(a) + b.

Theorem 12. (Fundamental Theorem of Affine Geometry)
For any n € w\ 2, if a bijection g : R” — R" send any line to a
line, then g is an R-affine mapping. In particular, such g is a linear
mapping if g(0x) = Oy. O
» We show that a statement, which is between the statements in
Problem 11 and Theorem 12, characterizes affineness of f : X — Y
with "X not being included in a line in Y.



A positive partial answer Liea Mgpngs (8/10)

Theorem 13. Suppose that X, Y are R-linear spaces and f : X —
Y. If (1) f(0x) =0y, (2')foranyline L C X, f"Lis either a
point or a line in Y, and if f”L is a line then f | Lis 1-1; (3)
there are ag, 01 € X s.t. f(0p) and f(o1) are independent in Y,
then f is a R-linear mappings.

A sketch of the proof: We prove that f is additive and there is
¢:R—=Rasin Theorem 8.

» To prove the aditivity one of the cases to consider is when o and b
are linearly independent (in X) but f(a) and f(b) are linearly
dependent. In this case there is i € 2 s.t. f(q;) is linealy
independent form f(a).



A positive partial answer (2/2) L i (9/10)

» The constellation of these and some other poins can be put
together in the following diagram:

flai+ao+Db) f"Lg

1Ly

‘//L
— J"Lo

= b=

=gy

» Some lines on the left side are sent to the same line by . But
enough parallelism servives and this enables to conclude that
f(a+b)=f(a) + f(b). O



Thank you for your attention!__,-""’,




Proof of Lemma 7.

Lemma 7. (Kuczma [1], Theorem 14.4.1) Suppose that f : R — R
is additive and multiplicative. Then f is either the constant zero
function or the identity function.

Proof. For any x € R,
(%) if x 2 0, then £(x) = (VX)) = (F(YX)? = 0
by multiplicativity of . By additivity of f, it follows that, for any
x, y € Rwith x <y,
fFly) = fx+(y —x)) = f(x) + fy — x) = f(x).
Thus f is a monotone function.

» Since f is additive, by Proposition 1, there is ¢ € R s.t. f(x) = cx
holds for all x € R. We have

c=f(1)=f(1-1) = f(1)f(1) = %
» Since f(1) > 0 by (*), it follows that c=0orc=1.1f c =0, fis
the constant function f(x) =0 forall x e R. If c=1, f =idg. O

L)



Proof of Theorem 8.

Theorem 8. For R-linear spaces X, Y and an additive mapping
f: X =Y, if there is a function p : R — R s.t.

f(ra) = ¢(r)f(a) foralla € X and r € R,
then f is an R-linear mapping.

Proof. If f”X = {0y}, then f is a linear mapping. Thus, we may
assume that f”X # {0y }. Then we have p(1) = 1. Hence, by
Lemma 7, it is enough to show that ¢ is additive and multiplicative.
To show that ¢ is additive, suppose that r, s € R. Let a € X be s.t.
(o) # Oy. By additivity of f, we have
o(r+s)f(a) = f((r+s)a) = f(roa+ sa) = f(ra) + f(sa) =
o(r)f(o) 4+ ¢(s)f(a) = (p(r) + ¢(s))f(a). It follows that
o(r+s) = o(r) + ¢(s).
Multiplicativity of ¢ can be shown similarly: Suppose r, s € R, and
let @ € X be s.t. f(a) # Oy. Then we have
o(rs)f(a) = f(rsa) = o(r)f(sa) = p(r)p(s)f(a). It follows that
£(15) = (1) (5) 0



Proof of Lemma 10.

Lemma 10. For any R-linear spaces X, Y, there is a non linear
mapping f : X — Y s.t. f(0x) = 0Oy, L C X either to a line or
to a point for each line L C X, and f | Lis 1-1 for a line L C X
if "L is a line.
Proof. Suppose that g € X \ {Ox} and dp € Y \ {Oy}. Let B be
a linear basis of X with eg € B. For x € X, let ¢(x) € R be the
ep-coordinate of x w.r.t. B. That is, let p(x) € R be s.t. there is a
linear combination ¢ of elements of B\ {eo} s.t. z = ¢(x)eo + c.

» Let ¢ : R — R be any non-linear bijective function with 1(0) = 0.

> Let f: X — Y be defined by f(x) = 1¢(¢(x))do. Clearly f is not a
linear mapping. f(0x) = Oy by the definition of f.

» For aline L C X with L = Rb + a for some o, b € X, if p(b) =0
then L = {4(¢(a))do}. Otherwise, by bijectivity of 1, we have
f”L =Rdg, and f | Lis 1-1. O

R



