On algebraic and geometrical characterizations of linear mappings

Sakaé Fuchino (渕野 昌)

Graduate School of System Informatics, Kobe University, Japan

(神戸大学大学院 システム情報学研究科)

http://fuchino.ddo.jp/index.html

(2020年07月29日 (00:39 JST) version)

2020年7月7日 (JST, 於 Kobe Set Theory Seminar)

This presentation is typeset by uplaTeX with beamer class. The most up-to-date version of these slides is downloadable as

http://fuchino.ddo.jp/slides/kobe2020-07-07-pf.pdf

The research is partially supported by Kakenhi Grant-in-Aid for Scientific Research (C) 20K03717

- ▶ A function $f : \mathbb{R} \to \mathbb{R}$ is said to be additive if f(a+b) = f(a) + f(b) holds for all $a, b \in \mathbb{R}$.
- ightharpoonup If $f: \mathbb{R} \to \mathbb{R}$ is additive, then f is \mathbb{Q} -linear.
- ightharpoonup If $f: \mathbb{R} \to \mathbb{R}$ is additive and f is discontinuous at one point, then f is everywhere discontinuous.
- ightharpoonup Any monoton $f:\mathbb{R} \to \mathbb{R}$ is discontinuous at most on countably many points.

Proposition 1. For any additive $f: \mathbb{R} \to \mathbb{R}$, the following are equivalent:

- (a) f is an \mathbb{R} -linear mapping; (b) f is continuous;
- (c) f is monotone.

- ▶ For \mathbb{R} -linear spaces X, Y, a mapping $f: X \to Y$ is said to be additive if
 - f(a + b) = f(a) + f(b) holds for all $a, b \in X$.
- ightharpoonup If $f: \mathbb{R}^n \to \mathbb{R}^m$ is additive, then f is \mathbb{Q} -linear.

Proposition 2. For any additive $f: \mathbb{R}^n \to \mathbb{R}^m$, the following are equivalent:

- (a) f is an \mathbb{R} -linear mapping; (b) f is continuous;
- ► The condition "(b) *f* is continuous" in propositions 1, 2 can be still improved as follows:

Theorem 3. For any additive $f: \mathbb{R}^n \to \mathbb{R}^m$, the following are equivalent:

- (a) f is an \mathbb{R} -linear mapping; (b) f is continuous;
- (c) (Sierpiński) f is a measurable function;
- (d) (Steinhaus) f is a Baire function.

Proposition 4. (ZFC, Hamel) There is a discontinuous additive function $f : \mathbb{R} \to \mathbb{R}$.

▶ Proposition 3. implies the following:

Corollary 5. (ZF + AD) A function $f : \mathbb{R}^n \to \mathbb{R}^m$ is a linear mapping if and only if it is additive.

Corollary 6. ZF + DC + "any function $f : \mathbb{R}^n \to \mathbb{R}^m$ is linear mapping if and only if it is additive" is equiconsistent with ZF.

Proof. By Propositon 3. and Shelah's "Can you take Solovay's inaccessible away?"

- ▶ A function $f : \mathbb{R} \to \mathbb{R}$ is said to be multiplicative if f(ab) = f(a)f(b) holds for all $a, b \in \mathbb{R}$.
 - **Lemma 7.** (Kuczma [1], Theorem 14.4.1) Suppose that $f: \mathbb{R} \to \mathbb{R}$ is additive and multiplicative. Then f is either the constant zero function or the identity function.

証明.

Theorem 8. For \mathbb{R} -linear spaces X, Y and an additive mapping $f:X\to Y$, if there is a function $\varphi:\mathbb{R}\to\mathbb{R}$ s.t.

$$f(r_0) = \varphi(r)f(0)$$
 for all $0 \in X$ and $r \in \mathbb{R}$, then f is an \mathbb{R} -linear mapping.

証明.

[1] Marek Kuczma, An introduction to the theory of functional equations and inequalities, Second Edition (ed. by Attila Gilányi), Birkhäuser (2009).

- ▶ For an \mathbb{R} -linear space X, $L \subseteq X$ is a line if and only if it is a 1-dimensional affine subspace of X. Thus L is a line if there are \emptyset , $\mathbb{b} \in X$ s.t. $L = \mathbb{R} \mathbb{0} + \mathbb{b} = \{r \mathbb{0} + \mathbb{b} : r \in \mathbb{R}\}.$
- ▶ $P \subseteq X$ is a point if it is a 0-dimensional affine subspace of X. That is, if P is a singleton.

Lemma 9. Suppose that X, Y are \mathbb{R} -linear spaces, and $f: X \to Y$ is an \mathbb{R} -linear mapping. Then, for each line $L \subseteq \mathbb{R}$, f''L is either a line or a point in Y, and if f''L is a line, then $f \upharpoonright L$ is 1-1.

Lemma 10. For \mathbb{R} -linear spaces X, Y, there is a non-linear mapping $f: X \to Y$ s.t. $f(\mathbb{O}_X) = \mathbb{O}_Y$, $L \subseteq X$ either to a line or to a point for each line $L \subseteq X$, and $f \upharpoonright L$ is 1-1 for a line $L \subseteq X$ if f''L is a line.

新田

Problem 11. Suppose that X, Y are \mathbb{R} -linear spaces and $f: X \to \mathbb{R}$ Y. If (1) $f(0_X) = 0_Y$, (2) for any line $L \subseteq X$, f''L is either a point or a line in Y, (3) there are \mathbb{Q} , $\mathbb{D} \in X$ s.t. $f(\mathbb{Q})$ and $f(\mathbb{D})$ are independent in Y, does it follow that f is a \mathbb{R} -linear mappings?

- ▶ The following theorem is often cited as the Fundamental Theorem of Affine Geometry.
- \triangleright For \mathbb{R} -linear spaces $X, Y, g: X \to Y$ is an \mathbb{R} -affine mapping if there are \mathbb{R} -linear mapping $f: X \to Y$ and $\mathbb{b} \in Y$ s.t. g is defined by $g(\mathfrak{a}) = f(\mathfrak{a}) + \mathfrak{b}$.

Theorem 12. (Fundamental Theorem of Affine Geometry) For any $n \in \omega \setminus 2$, if a bijection $g : \mathbb{R}^n \to \mathbb{R}^n$ send any line to a line, then g is an \mathbb{R} -affine mapping. In particular, such g is a linear mapping if $g(\mathbb{O}_X) = \mathbb{O}_Y$.

▶ We show that a statement, which is between the statements in Problem 11 and Theorem 12, characterizes affineness of $f: X \to Y$ with f''X not being included in a line in Y. 4 D > 4 A > 4 B > 4 B > B 9 9 9

A positive partial answer

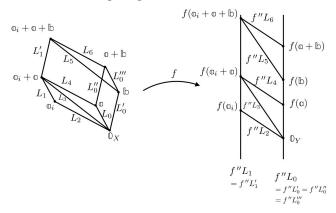
Theorem 13. Suppose that X, Y are \mathbb{R} -linear spaces and $f: X \to Y$. If (1) $f(\mathbb{O}_X) = \mathbb{O}_Y$, (2') for any line $L \subseteq X$, f''L is either a point or a line in Y, and if f''L is a line then $f \upharpoonright L$ is 1-1; (3) there are \mathfrak{o}_0 , $\mathfrak{o}_1 \in X$ s.t. $f(\mathfrak{o}_0)$ and $f(\mathfrak{o}_1)$ are independent in Y, then f is a \mathbb{R} -linear mappings.

A sketch of the proof: We prove that f is additive and there is $\varphi: \mathbb{R} \to \mathbb{R}$ as in Theorem 8.

▶ To prove the aditivity one of the cases to consider is when @ and @ are linearly independent (in X) but f(@) and f(@) are linearly dependent. In this case there is $i \in 2$ s.t. $f(@_i)$ is linearly independent form f(@).

A positive partial answer (2/2)

➤ The constellation of these and some other poins can be put together in the following diagram:



▶ Some lines on the left side are sent to the same line by f. But enough parallelism servives and this enables to conclude that f(a + b) = f(a) + f(b).

Proof of Lemma 7.

Lemma 7. (Kuczma [1], Theorem 14.4.1) Suppose that $f: \mathbb{R} \to \mathbb{R}$ is additive and multiplicative. Then f is either the constant zero function or the identity function.

Proof. For any $x \in \mathbb{R}$,

(*) if
$$x \ge 0$$
, then $f(x) = f((\sqrt{x})^2) = (f(\sqrt{x}))^2 \ge 0$

by multiplicativity of f. By additivity of f, it follows that, for any $x, y \in \mathbb{R}$ with $x \leq y$,

$$f(y) = f(x + (y - x)) = f(x) + f(y - x) \ge f(x).$$

Thus f is a monotone function.

▶ Since f is additive, by Proposition 1, there is $c \in \mathbb{R}$ s.t. f(x) = cx holds for all $x \in \mathbb{R}$. We have

$$c = f(1) = f(1 \cdot 1) = f(1)f(1) = c^{2}$$
.

▶ Since $f(1) \ge 0$ by (*), it follows that c = 0 or c = 1. If c = 0, f is the constant function f(x) = 0 for all $x \in \mathbb{R}$. If c = 1, $f = id_{\mathbb{R}}$.

Proof of Theorem 8.

Theorem 8. For \mathbb{R} -linear spaces X, Y and an additive mapping $f: X \to Y$, if there is a function $\varphi: \mathbb{R} \to \mathbb{R}$ s.t.

$$f(r_0) = \varphi(r)f(0)$$
 for all $0 \in X$ and $r \in \mathbb{R}$,

then f is an \mathbb{R} -linear mapping.

Proof. If $f''X = \{0_Y\}$, then f is a linear mapping. Thus, we may assume that $f''X \neq \{0_Y\}$. Then we have $\varphi(1) = 1$. Hence, by Lemma 7, it is enough to show that φ is additive and multiplicative.

- ► To show that φ is additive, suppose that $r, s \in \mathbb{R}$. Let $\emptyset \in X$ be s.t. $f(\emptyset) \neq \emptyset_Y$. By additivity of f, we have $\varphi(r+s)f(\emptyset) = f((r+s)\emptyset) = f(r\emptyset+s\emptyset) = f(r\emptyset) + f(s\emptyset) = \varphi(r)f(\emptyset) + \varphi(s)f(\emptyset) = (\varphi(r) + \varphi(s))f(\emptyset)$. It follows that $\varphi(r+s) = \varphi(r) + \varphi(s)$.
- ▶ Multiplicativity of φ can be shown similarly: Suppose $r, s \in \mathbb{R}$, and let $\emptyset \in X$ be s.t. $f(\emptyset) \neq \emptyset_Y$. Then we have $\varphi(rs)f(\emptyset) = f(rs\emptyset) = \varphi(r)f(s\emptyset) = \varphi(r)\varphi(s)f(\emptyset)$. It follows that $\varphi(rs) = \varphi(r)\varphi(s)$.

Proof of Lemma 10.

Lemma 10. For any \mathbb{R} -linear spaces X, Y, there is a non linear mapping $f: X \to Y$ s.t. $f(\mathbb{O}_X) = \mathbb{O}_Y$, $L \subseteq X$ either to a line or to a point for each line $L \subseteq X$, and $f \upharpoonright L$ is 1-1 for a line $L \subseteq X$ if f''L is a line.

Proof. Suppose that $e_0 \in X \setminus \{0_X\}$ and $d_0 \in Y \setminus \{0_Y\}$. Let B be a linear basis of X with $e_0 \in B$. For $x \in X$, let $\varphi(x) \in \mathbb{R}$ be the e_0 -coordinate of x w.r.t. B. That is, let $\varphi(x) \in \mathbb{R}$ be s.t. there is a linear combination e of elements of $B \setminus \{e_0\}$ s.t. $x = \varphi(x)e_0 + e$.

- ▶ Let $\psi : \mathbb{R} \to \mathbb{R}$ be any non-linear bijective function with $\psi(0) = 0$.
- ▶ Let $f: X \to Y$ be defined by $f(x) = \psi(\varphi(x))d_0$. Clearly f is not a linear mapping. $f(\mathbb{O}_X) = \mathbb{O}_Y$ by the definition of f.
- ▶ For a line $L \subseteq X$ with $L = \mathbb{R}\mathbb{b} + \mathbb{o}$ for some \mathbb{o} , $\mathbb{b} \in X$, if $\varphi(\mathbb{b}) = 0$ then $f''L = \{\psi(\varphi(\mathbb{o}))\mathbb{d}_0\}$. Otherwise, by bijectivity of ψ , we have $f''L = \mathbb{R}\mathbb{d}_0$, and $f \upharpoonright L$ is 1-1.

