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Additive functions on R Linear Mappings (2/10)

▶ A function f : R → R is said to be additive if
f (a+ b) = f (a) + f (b) holds for all a, b ∈ R.

▷ If f : R → R is additive, then f is Q-linear.

▷ If f : R → R is additive and f is discontinuous at one point, then f
is everywhere discontinuous.

▷ Any monoton f : R → R is discontinuous at most on countably
many points.

Proposition 1. For any additive f : R → R, the following are
equivalent:

( a ) f is an R-linear mapping; ( b ) f is continuous;
( c ) f is monotone.
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Additive functions on Rn Linear Mappings (3/10)

▶ For R-linear spaces X , Y , a mapping f : X → Y is said to be
additive if

f (a + b) = f (a) + f (b) holds for all a, b ∈ X .

▷ If f : Rn → Rm is additive, then f is Q-linear.

Proposition 2. For any additive f : Rn → Rm, the following are
equivalent:

( a ) f is an R-linear mapping; ( b ) f is continuous;

▶ The condition “(b) f is continuous” in propositions 1, 2 can be still
improved as follows:

Theorem 3. For any additive f : Rn → Rm, the following are
equivalent:

( a ) f is an R-linear mapping; ( b ) f is continuous;
( c ) (Sierpiński) f is a measurable function;
( d ) (Steinhaus) f is a Baire function.
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ZFC vers. ZF + DC + ? Linear Mappings (4/10)

Proposition 4. (ZFC, Hamel) There is a discontinuous additive
function f : R → R.

▶ Proposition 3. implies the following:

Corollary 5. (ZF + AD) A function f : Rn → Rm is a linear
mapping if and only if it is additive.

Corollary 6. ZF + DC + “any function f : Rn → Rm is linear
mapping if and only if it is additive” is equiconsistent with ZF.

Proof. By Propositon 3. and Shelah’s “Can you take Solovay’s
inaccessible away?” □
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Additive and multiplicative functions on R Linear Mappings (5/10)

▶ A function f : R → R is said to be multiplicative if
f (ab) = f (a)f (b) holds for all a, b ∈ R.

Lemma 7. (Kuczma [1], Theorem 14.4.1) Suppose that f : R → R
is additive and multiplicative. Then f is either the constant zero
function or the identity function.
証明．

Theorem 8. For R-linear spaces X , Y and an additive mapping
f : X → Y , if there is a function φ : R → R s.t.

f (ra) = φ(r)f (a) for all a ∈ X and r ∈ R,
then f is an R-linear mapping.
証明．

[1] Marek Kuczma, An introduction to the theory of functional equations and
inequalities, Second Edition (ed. by Attila Gilányi), Birkhäuser (2009).

Thm.13 へ
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Points and lines Linear Mappings (6/10)

▶ For an R-linear space X , L ⊆ X is a line if and only if it is a
1-dimensional affine subspace of X . Thus L is a line if there are a,
b ∈ X s.t. L = Ra + b = {ra + b : r ∈ R}.

▶ P ⊆ X is a point if it is a 0-dimensional affine subspace of X . That
is, if P is a singleton.

Lemma 9. Suppose that X , Y are R-linear spaces, and f : X → Y
is an R-linear mapping. Then, for each line L ⊆ R, f ′′L is either a
line or a point in Y , and if f ′′L is a line, then f ↾ L is 1-1.

Lemma 10. For R-linear spaces X , Y , there is a non-linear map-
ping f : X → Y s.t. f (0X ) = 0Y , L ⊆ X either to a line or to a
point for each line L ⊆ X , and f ↾ L is 1-1 for a line L ⊆ X if f ′′L
is a line.
証明．
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An Open Question and a partial Answer Linear Mappings (7/10)

Problem 11. Suppose that X , Y are R-linear spaces and f : X →
Y . If ( 1 ) f (0X ) = 0Y , ( 2 ) for any line L ⊆ X , f ′′L is either a
point or a line in Y , ( 3 ) there are a, b ∈ X s.t. f (a) and f (b)
are independent in Y , does it follow that f is a R-linear mappings?

▶ The following theorem is often cited as the Fundamental Theorem
of Affine Geometry.

▷ For R-linear spaces X , Y , g : X → Y is an R-affine mapping if
there are R-linear mapping f : X → Y and b ∈ Y s.t. g is defined
by g(a) = f (a) + b.

Theorem 12. (Fundamental Theorem of Affine Geometry)
For any n ∈ ω \ 2, if a bijection g : Rn → Rn send any line to a
line, then g is an R-affine mapping. In particular, such g is a linear
mapping if g(0X ) = 0Y . □

▶ We show that a statement, which is between the statements in
Problem 11 and Theorem 12, characterizes affineness of f : X → Y
with f ′′X not being included in a line in Y .
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A positive partial answer Linear Mappings (8/10)

Theorem 13. Suppose that X , Y are R-linear spaces and f : X →
Y . If ( 1 ) f (0X ) = 0Y , (2′ ) for any line L ⊆ X , f ′′L is either a
point or a line in Y , and if f ′′L is a line then f ↾ L is 1-1; ( 3 )
there are a0, a1 ∈ X s.t. f (a0) and f (a1) are independent in Y ,
then f is a R-linear mappings.

A sketch of the proof: We prove that f is additive and there is
φ : R → R as in

:::::::::::
Theorem 8 .

▶ To prove the aditivity one of the cases to consider is when a and b
are linearly independent (in X ) but f (a) and f (b) are linearly
dependent. In this case there is i ∈ 2 s.t. f (ai ) is linealy
independent form f (a).
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A positive partial answer (2/2) Linear Mappings (9/10)

▶ The constellation of these and some other poins can be put
together in the following diagram:

▶ Some lines on the left side are sent to the same line by f . But
enough parallelism servives and this enables to conclude that
f (a + b) = f (a) + f (b). □
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Thank you for your attention!

Grazie per l’attenzione!
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Proof of Lemma 7.

Lemma 7. (Kuczma [1], Theorem 14.4.1) Suppose that f : R → R
is additive and multiplicative. Then f is either the constant zero
function or the identity function.

Proof. For any x ∈ R,
(*) if x ≥ 0, then f (x) = f ((

√
x)2) = (f (

√
x))2 ≥ 0

by multiplicativity of f . By additivity of f , it follows that, for any
x , y ∈ R with x ≤ y ,

f (y) = f (x + (y − x)) = f (x) + f (y − x) ≥ f (x).
Thus f is a monotone function.

▶ Since f is additive, by Proposition 1, there is c ∈ R s.t. f (x) = cx
holds for all x ∈ R. We have

c = f (1) = f (1 · 1) = f (1)f (1) = c2.
▶ Since f (1) ≥ 0 by (*), it follows that c = 0 or c = 1. If c = 0, f is

the constant function f (x) = 0 for all x ∈ R. If c = 1, f = idR. □
もどる
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Proof of Theorem 8.

Theorem 8. For R-linear spaces X , Y and an additive mapping
f : X → Y , if there is a function φ : R → R s.t.

f (ra) = φ(r)f (a) for all a ∈ X and r ∈ R,
then f is an R-linear mapping.

Proof. If f ′′X = {0Y }, then f is a linear mapping. Thus, we may
assume that f ′′X ̸= {0Y }. Then we have φ(1) = 1. Hence, by
Lemma 7, it is enough to show that φ is additive and multiplicative.

▶ To show that φ is additive, suppose that r , s ∈ R. Let a ∈ X be s.t.
f (a) ̸= 0Y . By additivity of f , we have
φ(r + s)f (a) = f ((r + s)a) = f (ra + sa) = f (ra) + f (sa) =
φ(r)f (a) + φ(s)f (a) = (φ(r) + φ(s))f (a). It follows that
φ(r + s) = φ(r) + φ(s).

▶ Multiplicativity of φ can be shown similarly: Suppose r , s ∈ R, and
let a ∈ X be s.t. f (a) ̸= 0Y . Then we have
φ(rs)f (a) = f (rsa) = φ(r)f (sa) = φ(r)φ(s)f (a). It follows that
φ(rs) = φ(r)φ(s). □
もどる



‌

‌

‌

‌

‌

‌

‌

‌

‌

‌

‌

‌

‌

‌

‌

‌

‌

‌

‌

‌

‌

‌

‌

‌

‌

‌

‌

‌

‌

‌

‌

‌

‌

‌

‌

‌

‌

‌

‌

‌

Proof of Lemma 10.
Lemma 10. For any R-linear spaces X , Y , there is a non linear
mapping f : X → Y s.t. f (0X ) = 0Y , L ⊆ X either to a line or
to a point for each line L ⊆ X , and f ↾ L is 1-1 for a line L ⊆ X
if f ′′L is a line.

Proof. Suppose that e0 ∈ X \ {0X} and d0 ∈ Y \ {0Y }. Let B be
a linear basis of X with e0 ∈ B . For x ∈ X , let φ(x) ∈ R be the
e0-coordinate of x w.r.t. B . That is, let φ(x) ∈ R be s.t. there is a
linear combination c of elements of B \ {e0} s.t. x = φ(x)e0 + c.

▶ Let ψ : R → R be any non-linear bijective function with ψ(0) = 0.

▶ Let f : X → Y be defined by f (x) = ψ(φ(x))d0. Clearly f is not a
linear mapping. f (0X ) = 0Y by the definition of f .

▶ For a line L ⊆ X with L = Rb + a for some a, b ∈ X , if φ(b) = 0
then f ′′L = {ψ(φ(a))d0}. Otherwise, by bijectivity of ψ, we have
f ′′L = Rd0, and f ↾ L is 1-1. □

もどる


