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A Fhe solution of the Continuum Problem Coninuum Poblem (2/11)

» The continuum is either Ry or Ny or very large.

> Provided that a reasonable, and sufficiently strong reflection
principle should hold.

» The continuum is either N1 or Ny or very large.

> Provided that a Laver-generically supercompact cardinal should
exist. Under a Laver-generically supercompact cardinal, in each of
the three scenarios, the respective reflection principle in the sense of
above also holds.
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are going to appear in joint papers with André Ottenbereit Maschio
Rodriques and Hiroshi Sakai:

Sakaé Fuchino, André Ottenbereit Maschio Rodriques and Hiroshi Sakai, Strong
downward Léwenheim-Skolem theorems for stationary logics, I, Archive for
Mathematical Logic (2020). http://fuchino.ddo.jp/papers/SDLS-x.pdf

Sakaé Fuchino, André Ottenbereit Maschio Rodriques and Hiroshi Sakai, Strong
downward Léwenheim-Skolem theorems for stationary logics, 1l — reflection
down to the continuum, to appear.

http://fuchino.ddo.jp/papers/SDLS-11-x.pdf

Sakaé Fuchino, André Ottenbereit Maschio Rodriques and Hiroshi Sakai, Strong
downward Léwenheim-Skolem theorems for stationary logics, Il — mixed
support iteration, submitted.

https://fuchino.ddo.jp/papers/SDLS-I1l-x.pdf

Sakaé Fuchino, and André Ottenbereit Maschio Rodriques, Reflection principles,
generic large cardinals, and the Continuum Problem, to appear in the

Proceedings of the Symposium on Advances in Mathematical Logic 2018.
https://fuchino.ddo.jp/papers/refl_principles gen large cardinals continuum_problem-x.pdf


http://fuchino.ddo.jp/papers/SDLS-x.pdf
http://fuchino.ddo.jp/papers/SDLS-II-x.pdf
https://fuchino.ddo.jp/papers/SDLS-III-x.pdf
https://fuchino.ddo.jp/papers/refl_principles_gen_large_cardinals_continuum_problem-x.pdf
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» The size of the continuum is either Xy or Ny or very large.

> provided that a “reasonable”, and sufficiently strong reflection
principle should hold.
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» The size of the continuum is either Ny or Ny or very large.

> provided that a “reasonable”, and sufficiently strong reflection
principle should hold.

Theorem 1. SDLS(LY0. < R,) implies CH. G

Actually SDLS(LYS,, < X,) is equivalent with Sean Cox's
Diagonal Reflection Principle for internal clubness + CH.

Theorem 2. (a) SDLS (£, < 2%0) jmplies 2% = R,
(b) SDLS™(£X0.. < N,) is equivalent to Diagonal Reflection
Principle for internal clubness  (c) SDLS™ (Lefyy, <2%°) is

equivalent to SDLS™ (L2, < Np) + —~CH. A

Theorem 3. SDLS™M(LEKL < 2%0) implies 280 s very large
(e.g. weakly Mahlo, weakly hyper Mahlo, etc.) A
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» The size of the continuum is either Ny or Xy or very large!

> provided that a strong variant of generic large cardinal exists.
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» The size of the continuum is either Ny or Xy or very large!

> provided that a strong variant of generic large cardinal exists.

Theorem 1. If there exists a Laver-generically supercompact
cardinal k for o-closed p.o.s, then k = X and CH holds. Moreover

MATR1 (o-closed) holds. Thus SDLS(LLS,, < Ny) also holds.
Theorem 2. If there exists a Laver-generically supercompact car-

dinal  for proper p.o.s, then k = Ry = 280 Moreover PFAT™
holds. Thus SDLS™ (£, < 2%) also holds.

Theorem 3. If there exists a Laver generically supercompact car-
dinal x for c.c.c. p.o.s, then k < 2% and k is very large (for all
regular \ > K, there is a o-saturated normal ideal over P ()\)).
Moreover MA™*#(ccc, < k) for all i < r and SDLST(LEKL < k)
hold.
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Theorem 1. (1) Suppose that ZFC + “there exists a supercom-
pact cardinal” is consistent. Then ZFC + “there exists a Laver-
generically supercompact cardinal for o-closed p.o.s” is consistent
as well.

(2) Suppose that ZFC + ‘there exists a superhuge cardinal” is
consistent. Then ZFC + ‘there exists a Laver-generically super-
compact cardinal for proper p.o.s” is consistent as well.

(3) Suppose that ZFC + “there exists a supercompact cardinal” is
consistent. Then ZFC + “there exists a strongly Laver-generically
supercompact cardinal for c.c.c. p.o.s” is consistent as well.

Proof. Starting from a model of ZFC with a supercompact cardinal
r (a superhuge cardinal in case of (2)), we can obtain models of
respective assertions by iterating (in countable support in case of
(1), (2) and in finite support in case of (3)) with respective p.o.s k
times along a Laver function (for (1) and (2) Laver function for
supercompactness; for (2), Laver function for super-
almost-hugeness). O



Some more background and open problems Coruun Pl (8/11)

» By a slight modification of a proof by B. Konig, the implication of
SDLS(£X0,, < Ry) from the existence of Laver-generically
supercompact cardinal for o-closed p.o.s can be interpolated by a
Game Reflection Principle which by itself characterizes the usual
version of generic supercompactness of N, by o-closed p.o.s.

Problem 1. Does there exist some sort of Game Reflection Principle
which plays similar role in the other two scenarios in the trichotomy?

Problem 2. Does (some variation of) Laver-generic supercompactness
of x for c.c.c. p.o.s imply k = 2807

Problem 3. Is there any characterization of MA™™(...) which would fit
our context?

Problem 4. What is about Laver-generic supercompactness for Cohen
reals? What is about Laver-generic supercompactness for stationary
preserving p.o.s?



A partial solution of Problem 2 Corum Pt (9/11)

Lemma 1. Suppose that P is a class of p.o.s containing a p.o.
P which adds a new real. If x is a Laver-generically supercompact
for P, then x < 2o,
Proof. Let P € P be s.t. any generic filter over [P codes a new real.
Suppose that ;i < k. We show that 280 > /. Let 3= (ae : &< p)
be a sequence of subsets of w. It is enough to show that & does not
enumerate P(w).

» By Laver-generic supercompactness of « for P, there are Q € P
with P < Q, (V,Q)-generic H, transitive M C V[H] and j C M[H]
with j: V> M, crit(j) = x and P,H € M. Since u < k, we have
j(@=a

» Since G € M where G =HNP and G codes a new real not in V,
we have

M = j(3) does not enumerate 2%0”.
» By elementarity, it follows that
V [=% 3 does not enumerate 2%0”. O
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Theorem 2. If s is tightly Laver-generically superhuge for ccc

p.o.s, then r = 2%0,

Proof. Suppose that « is tightly Laver-generically superhuge for ccc
p.o.s. By Lemma 1 on the previous slide, we have 2% > 4.

To prove 2% < k, let A > k, 2% be large enough and let Q be a
ccc p.o. s.t. there are (V,Q)-generic H and j : V 3IMC V[H] with
crit(j) =k, |Q| <j(k) > A\, H e M and j"j(r) € M.

» Since M = j(k) is regular” by elementarity, j(x) is also regular in
V by the closedness of M. Thus, we have V = (k)% = j(k)” by
SCH above max{x, 2%} (available under the assumption on ).

» Since Q has the ccc and | Q| < j(k), it follows that
VIH] [=2% < j(x)". Now we have (j(x)")" = (j(x)")"I¥] by
j"j(k) € M. Thus M =280 < j(k)".

» By elementarity, it follows that V [=“2%0 < 7. O






A Proof of: SDLST*(LERE, < 2%) implies 2% is very large.

» For a regular cardinal x and a cardinal A > k, § C P, () is said to
be 2-stationary if, for any stationary 7 C P,()), thereisan a€ S
s.t. | kN al is a regular uncountable cardinal and 7 N Pyna(a) is
stationary in Pyna(a). A regular cardinal k has the 2-stationarity
property if P.(\) is 2-stationary (as a subset of itself) for all A > k.

Lemma 1. For a regular uncountable x, SDLS*(LEKL < k) im-

plies that k is 2-stationary.

Lemma 2. Suppose that k is a regular uncountable cardinal.
(1) If k is 2-stationary then k is a limit cardinal.

(2) For any \ > k, 2-stationary S C P.()\), and any stationary
T C P.(N), there are stationarily many r € S s.t. T N Pun,(r) is
stationary.

(3) If k is 2-stationary then k is a weakly Mahlo cardinal.

R



SDLS™(L£50,, <2%) & SDLS™(LL,, <N,) + ~CH.

stat»

> If SDLS™(£0,, < 2%0) holds then 2% = X, by (a). Thus, it follows
that SDLS™ (L2, < R5) 4+ —CH holds.

» Suppose SDLS™(£L2,, < N5) holds. Then we have 2% < X, by a
theorem of Todoréevi¢ already mentioned. Thus, if 2% > Ry in
addition, we have 280 = R,. Thus SDLS™(£L2,, < 2%) follows.

U

LR



Baumgartner’'s Theorem

> Krk>|M[>|ANM| >R,
> there is a club C C [M]¥ with C C M

Theorem 1 (J.E. Baumgartner). Let 83 < Ao < A and Ao be
regular. Then any club subset of [\]<° has cardinality > \¥°.

> k> |M|>|C|>2%,
Y%



SDLS™ (L%, < k) for k > X, implies x > 2%,

SDLS™(L£L2,, < Np) implies 280 < Ry: it is easy to see that
SDLS™(£52,, < Np) implies the reflection principle RP(w,) in Jech's
[millennium-book]. RP(wy) implies 2% < R, (Todoréevi¢).

It follows that k > N, > 2o,

Thus, we may assume that SDLS™(£59,, < X;) does not hold.
Hence there is a structure 2 s.t., for any B <% 2, we have

stat

|B|| > No. Let A = ||| . W.l.o.g., we may assume that the

underlying set of 2 is \. Let 2A* = (H(AT),\, ..., €).
\v/

By SDLS™ (LY, < k), there is M € [”H()\+)]<”

AT M <Z§tgt 20%. In particular, 2 [ (AN M) <£§t§f Ql.

By the choice of 2, we have | M| > | AN M| > Ny.

By elementarity, there is C C [M]*0 N M which is a club in [M]%.
By a theorem of Baumgartner, it follows that

K>|M|>]|C|> 2%, O

L)



SDLS™ (£, < 2%) implies 2% = R,.

Proposition 1. SDLS™ (LY., < k) for k > N, implies k > 20
GEY

» Suppose that SDLS™(£Y2,, < 2%0) holds. Then 2% < X, by the
Proposition 1.

» SDLS™ (LY. <R;) does not hold since
“there are uncountably many x s.t. ..."

is expressible in £39 . [e.g. by stat X (3x(--- A x & X)) ]
Thus, 2% > N;. O

Corollary 2. SDLS(LLS,, < 2%°) is inconsistent.

Proof. Assume SDLS(£L2,, < 2%0). Then SDLS™(£L2,, < 2%0)

holds. Thus 2% = X, by the proof above. But then

SDLS(£L0,, < Ry) holds. By Proposition 1. This implies 2% = ;.

This is a contradiction. O
b¥5



SDLS(L,, < Xy) implies CH.

» Suppose that 2 = (H(w1), €) and Let B € [H(w1)]<™2 be s.t.

A B < ) 2. Then for any U € [B]*° we have
A = “EIxVy(y Ex«yelU).

» By elementarity we also have B |="3IxVy(y € x <> y e U)".

> It follows that U € B. Thus [B]*® C B and 2% < | B| < ;.

g

LX)



Strong Downward Léwneheim-Skolem Theorem for stationary logic

> L2 s a weak second order logic with monadic second-order
variables X, Y etc. which run over the countable subsets of the
underlying set of a structure. The logic has only the weak second
order quantifier “stat” and its dual “aa" (but not the second-order
existential (or universal) quantifiers) with the interpretation:

A = stat X p(..., X) &
{U e [AM : 2= ¢(..., U)} is a stationary subset of [A]%°.

> For B=(B,..) CA B < x A =

B = o(ap, ..., Up,...) & A= o(ao, ..., Ug, ...) for all £52,-formula
v = ¢(xo, ..., Xo, ...) and for all ag, ... € B and for all
o, ... € [B]NO.

» SDLS(LM,, <k) &
For any structure 20 = (A, ...) of countable signature, there is a

structure B of size <k s.t. B < xo A b3
stat



A weakening of the Strong Downward Léwneheim-Skolem Theorem

> ForB=(B,..)C2 B %ZNO A =

stat

B = o(ap, ...) < A= o(ap, ...) for all £52,-formula ¢ = ¢(xo, ...)
without free seond-order variables and for all ag, ... € B.

—(pR
» SDLS™ (L2, <K) &
For any structure 20 = (A, ...) of countable signature, there is a
structure B of size < rst. B < 2

stat

LR



Strong Downward Lowneheim-Skolem Theorem for PKL logic

> LEKL is the weak second-order logic with monadic second order
variables X, Y, etc. with built-in unary predicate symbol K. The
monadic seond order variables run over elements of PK”‘( ) for a

structure 2 = (A, K, ...) where we denote

Ps(T)=Pis(T)={uC T : |u|<|S|}. The logic has the
unique second order quantifier “stat” (and its dual).

> The internal interpretation of the quantifier is defined by:

2 =t stat X ¢(ao, ..., U, ..., X) &=
{UePra(A)NA : AEM p(ag, ..., U, ..., U)} is a stationary
subset of P, u(A) for ag,... € Aand Uy, ... € P, a(A)NA.

> For B =(B,KNB,..) CA=(AK,..) B <, A &

stat

B =Mt p(ag, ..., Up, -..) & A =M o(ag, ..., Uy, ...) for all
£ formula ¢ = ¢(x0, ...) ao, ... € B and U, ... € Pxns(B) N B.



Strong Downward Léwneheim-Skolem Theorem for PKL logic (2/2)

» SDLS™M(LPKL < k) =
for any regular A > « and a structuer 20 = (A, K, ...) of countable
signature with | A| = X and | K| = &, there is a substructure B of

A of size < K s.t. B <2':’,§t,<tL 2A.

» SDLS™(LEKE < k) &
for any regular A > x and a structuer 2 = (A, K, ...) of countable
signature with | A| = X and | K| = &, there are stationarily many

substructures B of 2 of size < k s.t. B ’<i£1€m 2.

stat

Y%



Laver generically supercompact cardinals

» For a class P of p.o.s, a cardinal « is a Laver-generically
supercomact for P if, for all regular A > « and P € P there is
Q € P with P < Q, s.t., for any (V,Q)-generic H, there are a inner
model M C V[H], and an elementary embedding j : V — M s.t.

(1) crit(j) = &, j(r) > A
(2) P,He M,
(3) ;"\ e M.

Y%



tightly Laver generically superhuge cardinals

» For a class P of p.o.s, a cardinal « is a tightly Laver-generically
superhuge for P if, for all regular A > x and P € P there is Q € P
with P < Q, s.t., for any (V, Q)-generic H, there are a inner model
M C V[H], and an elementary embedding j : V — M s.t.

R



Diagonal Reflection Principle
» (S. Cox) Diagonal Reflection Principle: for a regular cardinal 6 > Xy,

DRP(#,1C): There are stationarily many M € [H((6%0) 7)™ s.t.

(1) MNH(0) is internally club;
(2) for all R € M s.t. R is a stationary subset of [0]™°,
RN [0 N M]®e is stationary in [§ N M]®e.
» For a regular cardinal A > Ny
(¥)x: For any countable expansion 2 of (H()), €), if

(Sa : a€ H(A)), is a family of stationary subsets of [’H()\)]}i0
then there is an internally club M € [H(\)]M s.t. A [ M <2
and S, N [M]®0 is stationary in [M]®°, for all a € M.

Proposition 1. TFAE: (a) The global version of Diagonal Reflec-
tion Principle of S.Cox for internal clubness (i.e. DRP(0, IC) for all
regular 6 > R1) holds.

(b) (x)x for all regular X > Xy holds.

H¥5



Diagonal Reflection Principle
» (S.Cox) For a regular cardinal 6 > Ny:
DRP(6,1C): There are stationarily many M € [H((6%))]** s.t.
(1) MN#H(0) is internally club;
(2) forall R € M s.t. R is a stationary subset of [¢]™°,
RN [0 N M]e is stationary in [0 N M]e.
» For a regular cardinal A > Ny
(%)a: For any countable expansion 2 of (#()), €), if
(Ss : a€ H())), is a family of stationary subsets of [H(\)]™e,
then there is an internally club M € [H(A\)]¥ s.t. 2 | M < 2
and S, N [M]%0 is stationary in [M]%°, for all a € M.

Proposition 1. TFAE: (a) The global version of Diagonal Reflec-
tion Principle of S.Cox for internal clubness (i.e. DRP(0, IC) for all
regular 6 > ;) holds.

(b) (%) for all regular X > ¥ holds.
(c) SDLS™(£%2,, < R5) holds.

L)



Reflection Principles RP+,

» The following are variations of the “Reflection Principle” in
[Jech, Millennium Book].

RP|c For any uncountable cardinal ), stationary S C [H(\)]* and
any countable expansion 2l of the structure (H(\), €), there is
an internally club M € [H(A\)]™ s.t. (1) 2 | M < ; and (2)
S N [M]*e is stationary in [M]Y°.

RP\y For any uncountable cardinal ), stationary S C [H(\)]* and
any countable expansion 2 of the structure (H(\), €), there is

an internally unbounded M € [H(\)]™ s.t. (1) A [ M < 2;
and (2) SN [M]¥ is stationary in [M]Y0,

Since every internally club M is internally unbounded, we have:

Lemma 1. RP|c implies RPy.

RPy is also called Axiom R in Set-Theoretic Topology.

Theorem 2. ([Fuchino, Juhasz etal. 2010]) RPy implies FRP.

Y5



Stationary subsets of [X]%
» C C [X]Mis club in [X]M if (1) for every u € [X]™°, thereis v € C
with v C v; and (2) for any countable increasing chain F in C we
have | J F € C.

> S C [X]M is stationary in [X]Y0 if SN C # 0 for all club C C [X]%°.

» A set M is internally unbounded if M N [M]®¢ is cofinal in [M]%0
(w.rt. Q)

> A set M is internally stationary if M N [M]% is stationary in [M]%°

> A set M is internally club if M N [M]X contains a club in [M]%.

powrét do ** Diagonal Reflecion Princpe’”



Fodor-type Reflection Principle (FRP)
(FRP) For any regular x > w1, any stationary E C E/Y and any
mapping g : E — [k]™° with g(a) C « for all a € E, there is
v € ES st
(*) for any I € [y]™ closed w.r.t. g and club in 7, if
(I + o < wi) is a filtration of / then sup(/,) € E and
g(sup(ly)) C I hold for stationarily many o < wj.
> F = (lo : a < \)is a filtration of / if F is a continuously increasing
C-sequence of subsets of / of cardinality < |/|s.t. | =], ) la-
» FRP follows from Martin's Maximum or Rado’s Conjecture.
MA™ (o-closed) already implies FRP but PFA does not imply FRP
since PFA does not imply stationary reflection of subsets of E%>
(Magidor, Beaudoin) which is a consequence of FRP.
» FRP is a large cardinal property: FRP implies the total failure of the
square principle.
> FRP is known to be equivalent to the reflection of uncountable
coloring number of graphs down to cardinality < N». BE%



Fact 1 DEERA

Fact 1. (A. Hajnal and I. Juhasz, 1976) For any uncountable cardi-
nal k there is a non-metrizable space X of size k s.t. all subspaces
Y of X of cardinality < r are metrizable.

Proof.
» Let k' > K be of cofinality > &, ws.
> The topological space (' + 1, O) with
O =P()U{(K\x)U{K'} : x C K, xis bounded in £’}
is non-metrizable since the point v’ has character = cf(x’) > No.
> Any subspace of k' + 1 of size < & is discrete and hence metrizable.
O



Fact 3 DEEER

It is enough to prove the following:

Lemma 1. (Folklore 7, see [Fuchino, Juhasz etal.
2010]) For a regular cardinal x > Ny if, there is a
non-reflectingly stationary S C E7, then there is a non
_meta-lindelf (and hence non metrizable) locally compact
and locally countable topological space X of cardinality k s.t. all
subspace Y of X of cardinality < k are metrizable.

Proof.

Let /={a+1:a<k}and X =SUI.

Let (a, : @ € S) bes.t. a, € [INa]®, a, is of order-type w and
cofinal in a. Let O be the topology on X introduced by letting
(1) elements of / are isolated; and

(2) {ao U{a}\ B : B < a} aneighborhood base of each o € S.

Then (X, O) is not meta-lindelof (by Fodor's Lemma) but each
« < K as subspace of X is metrizable (by induction on «).(J



Coloring number and chromatic number of a graph

For a cardinal x € Card, a graph G = (G, K) has coloring number
< k if there is a well-ordering C on G s.t. for all p € G the set

{ge G :gCpand gK p}

has cardinality < k. b5

The coloring number col(G) of a graph G is the minimal cardinal
among such x as above.

The chromatic number chr(G) of a graph G = (G, K) is the
minimal cardinal x s.t. G can be partitioned into x pieces
G = U,<p Ga s.t. each G, is pairwise non adjacent (independent).

For all graph G we have chr(G) < col(G).



r-special trees
» For a cardinal x, a tree T is said to be x-special if T can be
represented as a union of x subsets T,, a@ < K s.t. each T, is an
antichain (i.e. pairwise incomparable set).
b3



Stationary subset of E
For a cardinal &,

ES={v <k cf(y) =w}

A subset C C £ of an ordinal £ of uncountable cofinality, C is closed
unbounded (club) in £ if (1): C is cofinal in & (w.r.t. the canonical
ordering of ordinals) and (2): for all n < &, if C N7 is cofinal in n
then n € C.

S C ¢ is stationary if SN C # () for all club C C €.

A stationary S C ¢ if reflectingly stationary if there is some 1 < £ of
uncountable cofinality s.t.S N7 is stationary in 7. Thus:

A stationary S C £ if non reflectingly stationary if S N7 is non
stationary for all n < £ of uncountable cofinality.
bY3



Theorem 1. MEERA
CH = SDLS(L¥/I| < R,): For a structure 21 with a countable
signature L and underlying set A, let 0 be large enough and
A = (H(0),A 2, €). where A = ém for a unary predicate symbol A
and 2 = &lﬁ[ for a constant symbol 2(. Let B <Abest.|B|=N;
for the underlying set B of B and [B] C B. B =2 | A% is then
as desired.

SDLS(L®, < Rp) = CH: Suppose 2l = {w> U [wo]™°, €}. Consider
the LN-formula ¢(X) = IxVy (y € x <> y e X).

If B =(B,..)isst | B| <X; and B < x,, then for C € [B]™,
since 2 |= ¢(C), we have B |= ¢(C). It dollows that [B]Y C B
and 2% < (| B|)M < | B| =¥y,

R



