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» The continuum is either Ry or Ny or very large.

> Provided that a reasonable, and sufficiently strong reflection
principle should hold.

» The continuum is either N1 or Ny or very large.

> Provided that a Laver-generically supercompact cardinal should
exist. Under a Laver-generically supercompact cardinal, in each of
the three scenarios, the respective reflection principle in the sense of
above also holds.
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are to be found in the joint papers with André Ottenbereit Maschio
Rodriques and Hiroshi Sakai:

Sakaé Fuchino, André Ottenbereit Maschio Rodriques and Hiroshi Sakai, Strong
downward Léwenheim-Skolem theorems for stationary logics, I, Archive for
Mathematical Logic (2020). https://fuchino.ddo.jp/papers/SDLS-x.pdf

Sakaé Fuchino, André Ottenbereit Maschio Rodriques and Hiroshi Sakai, Strong
downward Léwenheim-Skolem theorems for stationary logics, 1l — reflection
down to the continuum, to appear.
https://fuchino.ddo.jp/papers/SDLS-II-x.pdf

Sakaé Fuchino, André Ottenbereit Maschio Rodriques and Hiroshi Sakai, Strong
downward Léwenheim-Skolem theorems for stationary logics, Il — mixed
support iteration, submitted.

https://fuchino.ddo.jp/papers/SDLS-I1l-x.pdf

Sakaé Fuchino, and André Ottenbereit Maschio Rodriques, Reflection principles,
generic large cardinals, and the Continuum Problem, to appear in the

Proceedings of the Symposium on Advances in Mathematical Logic 2018.
https://fuchino.ddo.jp/papers/refl_principles gen large cardinals continuum_problem-x.pdf


https://fuchino.ddo.jp/papers/SDLS-x.pdf
https://fuchino.ddo.jp/papers/SDLS-II-x.pdf
https://fuchino.ddo.jp/papers/SDLS-III-x.pdf
https://fuchino.ddo.jp/papers/refl_principles_gen_large_cardinals_continuum_problem-x.pdf
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» The size of the continuum is either Xy or Ny or very large.

> provided that a “reasonable”, and sufficiently strong reflection
principle should hold.
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» The size of the continuum is either Xy or Ny or very large.

> provided that a “reasonable”, and sufficiently strong reflection
principle should hold.

Theorem A. SDLS(£Ye. <N implies CH.
Actually SDLS(£Y2,, < Xy) is equivalent with Sean Cox's

Diagonal Reflection Principle for internal clubness + CH.

Theorem B. (a) SDLS (£, < 2%0) jmplies 280 = X,.
(b) SDLS™(£X2., < Ny) is equivalent to Diagonal Reflection
Principle for internal clubness  (c) SDLS™ (L, <2'°) is

equivalent to SDLS™(L52,, < Np) + —CH. i

Theorem C. SDLS™(LEPKL < 2%0) jmplies 2%0 js very large
(e.g. weakly Mahlo, weakly hyper Mahlo, etc.) i



Generically large cardinals als the untimate reflection principles ot Protlmand L ety (6/14)

Theorem 1. (B. Konig; S.F., Ottenbreit, and Sakai [1])
The following are equivalent:

(a) kT is generically supercompact for < k-closed p.o.s.

(b) 2<% = k and GRP<"(< k™) holds.

Lemma 2. If k* is supercompact and x < k* is regular, then, for
P = Col(k, £*) and, for (V,P)-generic G, we have:

V[G] = k* = kT, k<" = K, and kT is a generically
supercompact cardinal for < k-closed p.o.s.

> Note that, for k < &/, if § is generically supercompact for x’-closed
p.o.s, then § is generically supercompact for x-closed p.o.s.



Generically large cardinals als the untimate reflection principles (2/3)  Coiuun Pk o gy (7/14)

Theorem 1. (B.Kdng; S.F., Ottenbreit, and Sakai [1])
(1) Suppose that x > N; is a regular cardinal s.t. u™° < & for all
1t < k. Then GRP<“1(< k) implies SDLS | (£L2,, < k).

(2) For a regular uncountable cardinal x > N;, GRP<“!(< k)
implies the Rado’s Conjecture RC(< k) with reflection point < k.

Theorem 2. (B. Kénig) GRP<“*(< wy) implies CH.

» More generally for regular x > R, GRP<%1(< k) implies 2% <
(see [1], Lemma 4.2).

Corollary 3. (1) GRP<“!(<w,) is equivalent to the statement:
wy is a generically supercompact cardinal for o-closed p.o.s.

(2) GRP=“1(< ws) implies the Rado Conjecture RC and
SDLS 4 (Lgte, < Ra).


https://fuchino.ddo.jp/papers/SDLS-x.pdf

Generically large cardinals als the untimate reflection principles (3/3)  Cotiuun Pk Lo goeicy (8/14)

Game Reflection Principle (GRP<*'(< Ry))
< wy is generically supercompact

by o-closed forcing MM

<
[1] Theorem 4.7, tw
\ Lemma 4.1 and Lemma 4.2 PFAJ ! \

SDLS (Lypit, < Rg) MA ™! (o-closed)

B.Kénig < DRP (ICy,) + CH
[1] Temma 2.1,(1) and [11 Lemma 2.1,(2) \
Lemma 3.5,(2) and Lemma 3.5, (1)

MA* (o-closed)

SDLS™ (L%, <N2) & DRP (ICy,)
Rado Conjecture (RC( <N2)) //

RPic,,
Ph.Doebler

Axiom R & RPw,,

/\ e

Semi-stationary Reflection (SSR) Fodor-type Reflection Principle (FRP)

\L Shelah, Sakai

Strong Chang Conjecture
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» is either Ny or Ny or very large!

> provided that
a reasonable, and sufficiently strong reflection principle

with the reflection point either < 1 or < 2% should hold.

» The consistency proofs of all of the strong reflection principles in
the statement above are obtained by similar arguments.

> By analyzing these proofs, we arrive at the following notion of of
Laver-generic supercompactness:



The size of the continuum ... Contiuum Problem and Lavergeneriy (3/14)
» is either Ny or Ny or very large!

> provided that a strong variant of generic large cardinal should exist.

For a class P of p.o.s, a cardinal x is a Laver-generically super-
compact for P if, for all regular A > x and P € P there is Q € P
with P < Q, s.t., for any (V, Q)-generic H, there are a inner model
M C V[H], and an elementary embedding j : V — M s.t.

(1) crit(j) = &, j(r) > A
(2) B,H € M,
(3)j"N e M.

> k is Laver-generically superhuge for P if (3) above is replaced by
(3)" j"j(r) € M.

» « is Laver-generically super-almost-huge for P if (3) above is
replaced by  (3)' j”d € M for all § < j(k).



The condition j”\ € M in place of ‘MCM Continuum Problem and Lavrgenercty (10/14)

Lemma. ([2]) Suppose that G is a (V,P)-generic filter for a p.o.

PeVandj:V Iy C VI[G] s.t., for cardinals x, \ in \ with
k <\, crit(j) =k and j"\ € M.

then (AT)M = (AT)V.
(5) H(AT)V € M.
6)j A€M forall Ac H(\T)V.



Consistency of Laver-generically supercompact cardinals  Cuinun Pbln an e gty (11/14)

Theorem. ([2]) (1) Suppose that ZFC + ‘there exists a super-
compact cardinal” is consistent. Then ZFC + “there exists a Laver-
generically supercompact cardinal for o-closed p.o.s” is consistent
as well.

(2) Suppose that ZFC + ‘there exists a superhuge cardinal” is
consistent. Then ZFC + ‘“there exists a Laver-generically super-
almost-huge cardinal for proper p.o.s” is consistent as well.

i)

(3) Suppose that ZFC + “there exists a supercompact cardinal” is
consistent. Then ZFC + “there exists a strongly Laver-generically
supercompact cardinal for c.c.c. p.o.s” is consistent as well.



The continuum under Laver-generically supercompact cardinals G Pl an o gty (12/14)

Proposition. ([2]) (1) Suppose that « is generically measurable
by a w1 preserving P. Then k > wi.

(2) Suppose that r is Laver-generically supercompact for wi-
preserving P with Col(wi, {wz2}) € P. Then k = w>.

(3) Suppose that P is a class of p.o.s containing a p.o. P s.t. any
(V,IP)-generic filter G codes a new real. If k is a Laver-generically
supercompact for P, then . < 2%, @

(4) Suppose that P is a class of p.o.s s.t. elements of P do not
add any reals. If k is generically supercompact by P, then we have
2N < k. AL

(5) Suppose that k is Laver-generically supercompact for P s.t.
all P € P are ccc and at least one P € P adds a real. Then
# < 2% holds and (a) SCH holds above 2<*. (b) For all regular
A\ > K, there is a o-saturated normal filter over P(A\). (6) If k

is tightly Laver-generically superhuge for ccc, then k = 2Ro,



The trichotomy Continuum Problem and Lavrgenercty (13/14)

Theorem. ([2]) Suppose that k is Laver-generically supercompact
cardinal for a class P of p.o.s.

(A) If elements of P are wi-preserving and do not add any re-
als, and Col(w1,{w2}) € P, then k = Ry and CH holds. Also,
MATRL(P, < X5) holds.

(B) If elements of P are ws-preserving and contain all proper p.o.s
then PFATY holds and r = 2%0 = R,.

(C) If elements of P are p-cc for some u < k and P contains
a p.o. which adds a reals then k is fairly large and k < 2%° also
MAY#(P, < k). holds for any 11 < k.



The trichotomy with SDLS and Laver genericity G Publn an e gty (13/14)

Theorem A. If there exists a Laver-generically supercompact
cardinal k for o-closed p.o.s, then k = N> and CH holds. Moreover

MATR (o-closed) holds. Thus SDLS(LLS,, < N») also holds.

Theorem B. If there exists a Laver-generically supercompact car-
dinal  for proper p.o.s, then k = Ry = 280 Moreover PFAT™
holds. Thus SDLS™ (£, < 2%) also holds.

Theorem C. /f there exists a Laver generically supercompact car-
dinal k for c.c.c. p.o.s, then k < 2%° and k is very large (for all
regular A > K, there is a o-saturated normal ideal over P())).
Moreover MA ' (ccc, < k) for all u < r and SDLS™(LEKL, < k)
hold. . = 2%0 js attained if we assume the tightly Laver genrically

superhugeness for c.c.c. p.o.s.






Laver generically large cardinals

For a class P of p.o.s, a cardinal x is a Laver-generically super-
compact for P if, for all regular A > k and P € P there is Q € P
with P < Q, s.t., for any (V, Q)-generic H, there are a inner model
M C V[H], and an elementary embedding j : V — M s.t.

(1) crit(j) = &, j(Kk) > A.
(2) P,He M,
(3)j"N e M.

> k is Laver-generically superhuge for P if (3) above is replaced by
(3)" j"j(k) € M.

» « is Laver-generically super-almost-huge for P if (3) above is

replaced by  (3)' j”d € M for all § < j(k).
LE%



tightly Laver generically superhuge cardinals

» For a class P of p.o.s, a cardinal « is a tightly Laver-generically
superhuge for P if, for all regular A > x and P € P there is Q € P
with P < Q, s.t., for any (V, Q)-generic H, there are a inner model
M C V[H], and an elementary embedding j : V — M s.t.

Proposition IZ% ¥ %



Proof of Proposition, (4)

Proposition, (4) Suppose that P is a class of p.o.s s.t. elements
of P do not add any reals. If x is generically supercompact by P,
then we have 2% < g,

Proof. Suppose that x < 2% and let \ > 2%o.

» Let P € P be s.t. for some (V,P)-generic G with j, M C V[G] s.t.
J: V3 M, crit(j) =k, j(k) > X and j"\ € M.
» By elementarity, M = j(k) < (2%)M”. Thus
(2%0)V > (2X) VI > (%)M > j(k) > A > (2%)Y.

This is a contradiction. LB



Proof of Proposition, (3)

Proposition 3, (3) Suppose that P is a class of p.o.s contai-
ning a p.o. P which adds a new real. If s is a Laver-generically
supercompact for P, then r < 2%

Proof. Let P € P be s.t. any generic filter over [P codes a new real.
Suppose that ;1 < k. We show that 2%0 > 4. Let &= (a¢ : & < p)
be a sequence of subsets of w. It is enough to show that 3 does not
enumerate P(w).

» By Laver-generic supercompactness of « for P, there are Q € P
with P < Q, (V,Q)-generic H, transitive M C V[H] and j C M[H]
with j: V= M, crit(j) = x and P, H € M. Since p < k, j(3) = &

» Since H € M where G =H NP and G codes a new real not in V,
we have

M = j(3) does not enumerate 2807,

» By elementarity, it follows that

V [=“ 3 does not enumerate 2%¢”. b¥%



Proof of Proposition, (2)

Proposition, (2) Suppose that x is Laver-generically supercom-
pact for wy-preserving P with Col(wy, {w2}) € P. Then k = wy.

Proof. Suppose that x # wy. Then, by (1), we have k > wy

> Let Q € P bes.t. P <Q for P = Col(wi, {w2}) and s.t., for a
(V,Q)-generic H, there are M, j C V[H] with j : V 3 M,
crit(j) = k.
» By elementarity, M =% j((w2)V) is “wy” 7. This is a contradiction
(w2)V
=(w2

since HNP € M collapes (w2)V to an ordinal of cardinality N;.

Y%



Proof of Proposition, (1)

Proposition, (1) Suppose that « is generically measurable by a
wi preserving P. Then x > ws.

Proof. Suppose that k < w;. Since k = w is impossible, we have
K = Wi.

» Let P be an w; preserving p.o. and G a (V, P)-generic filter with
M,j C V[G] st.j:V > M, crit(j) = &.
» By elementarity we have M = (k) = w1”.

» Thus (w1)¥ < (w1)™ < (w1)VIC]. This is a contradiction to the w;
preserving of PP.
br%



Proof of Theorem, (2)

Theorem, (2) Suppose that ZFC + “there exists a superhuge car-
dinal” is consistent. Then ZFC + “there exists a Laver-generically
super-almost-huge cardinal for proper p.o.s” is consistent as well.

Proof. Suppose that « is a superhuge cardinal. By Corazza [corazza|
there is a Laver function ¢ : k — V,; for super almost-hugeness.

We iterate proper pos x times with countable support along with
the Laver function.

Let P, be the xth stage of the iteration. and let G, be a

(V, P, )-generic filter. To show the Laver-generic
super-almost-hugensess, of « for proper p.o.s, let Q be a proper
p.o.in V[G] and Q be a P.-name of Q, for A > &, let j : V => M be

s.t. crit(j) = &, j(K) > A,
(*) {E&>M C M, and  (**) ((r) = Q.


https://www.jstor.org/stable/pdf/2586614.pdf

Proof of Theorem, (2) (2/2)

» Let P* = j(P.). Then
M [=“P* is the limit of a CS iteration of small proper p.o.s
extending the iteration for P
with the xth iterand being Q”

by elementarity and by (**). By the closedness (*) of M, the same
statement holds in V. Hence P* is proper in V and P, x Q < P*.

Since P, is an intermediate stage of proper CS-iteration toward P*
R =P*/G is proper in V[G] Let H be a (V[G], R)-generic filter.

» j can be lifted to a super almost huge embedding
J 2 V[G] = M[G][H]; a[G] ~ j(2)[G * H]

and the lifting witnesses the Laver-generically almost super
hugeness of  in V[G].

Y%



Game Reflection Principle
» For any set A and A C ">A, G"A(A) is the following game of
length  for players | and II. A match in G""A(A) looks like:
I ‘ ao a1 as e ag
Il | bo by by - be
where a¢, be € A for £ < k.

(€ <r)

> Il wins this match if
(ag,be : € <my e Aand (ag, be : £ <n) " (ay) & A for some
n < K;or (ag, be 1 £ < k) € [A]

where [A] ={f €: "A,f [ a € Aforall a < k}.

> For uncountable regular k, § with k < 6,

the Game Reflection Princile is defined as:

GRP<"(<§): For any set A of regular cardinality > §, A C *~A, and
r-club C C [A]<9, if the player Il has no winning strategy in
QDA(A), there is B € C s.t. the player Il has no winning
strategy in " B(AN">B). —



Generically supercompact cardinals

For a class P of p.o.s, a cardinal k is generically supercompact for
P, if for any X > k there are P € P, (V,P)-generic G, and classes

j, M CV[G] s.t. M is transitive, j : NV = M, crit(j) = &, j(k) > A
and j"\ € M.

LR



Strong Downward Léwneheim-Skolem Theorem for stationary logic

> L2 s a weak second order logic with monadic second-order
variables X, Y etc. which run over the countable subsets of the
underlying set of a structure. The logic has only the weak second
order quantifier “stat” and its dual “aa" (but not the second-order
existential (or universal) quantifiers) with the interpretation:

A = stat X p(..., X) &
{U € [A : 2 = ¢(..., U)} is a stationary subset of [A]%°.

> For B=(B,..) CAU B < x A &

B = o(ao, ..., Uy, ...) & A= o(ao, ..., Uy, ...) for all £2,-formula
© = (xo, ..., Xo, ...) and for all ap, ... € B and for all
Uo, ... € [B]NO.

» SDLS(LL,, <k) &
For any structure 20 = (A, ...) of countable signature, there is a

structure B of size <k s.t. B < xo A b5
stat



SDLS(L,, < Xy) implies CH.

» Suppose that 2 = (H(w1), €) and Let B € [H(w1)]<™2 be s.t.

A B < ) 2. Then for any U € [B]*° we have
A = “EIxVy(y Ex«yelU).

» By elementarity we also have B |="3IxVy(y € x <> y e U)".

> It follows that U € B. Thus [B]*® C B and 2% < | B| < ;.

g

LX)



SDLS™ (£, < 2%) implies 2% = R,.

Proposition 1. SDLS™ (LY., < k) for k > N, implies k > 20
GEY

» Suppose that SDLS™(£Y2,, < 2%0) holds. Then 2% < X, by the
Proposition 1.

» SDLS™ (LY. <R;) does not hold since
“there are uncountably many x s.t. ..."

is expressible in £39 . [e.g. by stat X (3x(--- A x & X)) ]
Thus, 2% > N;. O

Corollary 2. SDLS(LLS,, < 2%°) is inconsistent.

Proof. Assume SDLS(£L2,, < 2%0). Then SDLS™(£L2,, < 2%0)

holds. Thus 2% = X, by the proof above. But then

SDLS(£L0,, < Ry) holds. By Proposition 1. This implies 2% = ;.

This is a contradiction. O
b¥5



Diagonal Reflection Principle
» (S. Cox) Diagonal Reflection Principle: for a regular cardinal 6 > Xy,

DRP(#,1C): There are stationarily many M € [H((6%0) 7)™ s.t.

(1) MNH(0) is internally club;
(2) for all R € M s.t. R is a stationary subset of [0]™°,
RN [0 N M]®e is stationary in [§ N M]®e.
» For a regular cardinal A > Ny
(¥)x: For any countable expansion 2 of (H()), €), if

(Sa : a€ H(A)), is a family of stationary subsets of [’H()\)]}i0
then there is an internally club M € [H(\)]M s.t. A [ M <2
and S, N [M]®0 is stationary in [M]®°, for all a € M.

Proposition 1. TFAE: (a) The global version of Diagonal Reflec-
tion Principle of S.Cox for internal clubness (i.e. DRP(0, IC) for all
regular 6 > R1) holds.

(b) (x)x for all regular X > Xy holds.

H¥5



A weakening of the Strong Downward Léwneheim-Skolem Theorem

> ForB=(B,..)C2 B %ZNO A =

stat

B = o(ap, ...) < A= o(ap, ...) for all £52,-formula ¢ = ¢(xo, ...)
without free seond-order variables and for all ag, ... € B.

—(pR
» SDLS™ (L2, <K) &
For any structure 20 = (A, ...) of countable signature, there is a
structure B of size < rst. B < 2

stat

LR



Diagonal Reflection Principle
» (S.Cox) For a regular cardinal 6 > Ny:
DRP(6,1C): There are stationarily many M € [H((6%))]** s.t.
(1) MN#H(0) is internally club;
(2) forall R € M s.t. R is a stationary subset of [¢]™°,
RN [0 N M]e is stationary in [0 N M]e.
» For a regular cardinal A > Ny
(%)a: For any countable expansion 2 of (#()), €), if
(Ss : a€ H())), is a family of stationary subsets of [H(\)]™e,
then there is an internally club M € [H(A\)]¥ s.t. 2 | M < 2
and S, N [M]%0 is stationary in [M]%°, for all a € M.

Proposition 1. TFAE: (a) The global version of Diagonal Reflec-
tion Principle of S.Cox for internal clubness (i.e. DRP(0, IC) for all
regular 6 > ;) holds.

(b) (%) for all regular X > ¥ holds.
(c) SDLS™(£%2,, < R5) holds.

L)



SDLS™(L£50,, <2%) & SDLS™(LL,, <N,) + ~CH.

stat»

> If SDLS™(£0,, < 2%0) holds then 2% = X, by (a). Thus, it follows
that SDLS™ (L2, < R5) 4+ —CH holds.

» Suppose SDLS™(£L2,, < N5) holds. Then we have 2% < X, by a
theorem of Todoréevi¢ already mentioned. Thus, if 2% > Ry in
addition, we have 280 = R,. Thus SDLS™(£L2,, < 2%) follows.

U

LR



Strong Downward Lowneheim-Skolem Theorem for PKL logic

> LEKL is the weak second-order logic with monadic second order
variables X, Y, etc. with built-in unary predicate symbol K. The
monadic seond order variables run over elements of PK”‘( ) for a

structure 2 = (A, K, ...) where we denote

Ps(T)=Pis(T)={uC T : |u|<|S|}. The logic has the
unique second order quantifier “stat” (and its dual).

> The internal interpretation of the quantifier is defined by:

2 =t stat X ¢(ao, ..., U, ..., X) &=
{UePra(A)NA : AEM p(ag, ..., U, ..., U)} is a stationary
subset of P, u(A) for ag,... € Aand Uy, ... € P, a(A)NA.

> For B =(B,KNB,..) CA=(AK,..) B <, A &

stat

B =Mt p(ag, ..., Up, -..) & A =M o(ag, ..., Uy, ...) for all
£ formula ¢ = ¢(x0, ...) ao, ... € B and U, ... € Pxns(B) N B.



Strong Downward Léwneheim-Skolem Theorem for PKL logic (2/2)

» SDLS™M(LPKL < k) =
for any regular A > « and a structuer 20 = (A, K, ...) of countable
signature with | A| = X and | K| = &, there is a substructure B of

A of size < K s.t. B <2':’,§t,<tL 2A.

» SDLS™(LEKE < k) &
for any regular A > x and a structuer 2 = (A, K, ...) of countable
signature with | A| = X and | K| = &, there are stationarily many

substructures B of 2 of size < k s.t. B ’<i£1€m 2.

stat

Y%



A Proof of: SDLST*(LERE, < 2%) implies 2% is very large.

» For a regular cardinal x and a cardinal A > k, § C P, () is said to
be 2-stationary if, for any stationary 7 C P,()), thereisan a€ S
s.t. | kN al is a regular uncountable cardinal and 7 N Pyna(a) is
stationary in Pyna(a). A regular cardinal k has the 2-stationarity
property if P.(\) is 2-stationary (as a subset of itself) for all A > k.

Lemma 1. For a regular uncountable x, SDLS*(LEKL < k) im-

plies that k is 2-stationary.

Lemma 2. Suppose that k is a regular uncountable cardinal.
(1) If k is 2-stationary then k is a limit cardinal.

(2) For any \ > k, 2-stationary S C P.()\), and any stationary
T C P.(N), there are stationarily many r € S s.t. T N Pun,(r) is
stationary.

(3) If k is 2-stationary then k is a weakly Mahlo cardinal.

R



SDLS™ (L%, < k) for k > X, implies x > 2%,

SDLS™(L£L2,, < Np) implies 280 < Ry: it is easy to see that
SDLS™(£52,, < Np) implies the reflection principle RP(w,) in Jech's
[millennium-book]. RP(wy) implies 2% < R, (Todoréevi¢).

It follows that k > N, > 2o,

Thus, we may assume that SDLS™(£59,, < X;) does not hold.
Hence there is a structure 2 s.t., for any B <% 2, we have

stat

|B|| > No. Let A = ||| . W.l.o.g., we may assume that the

underlying set of 2 is \. Let 2A* = (H(AT),\, ..., €).
\v/

By SDLS™ (LY, < k), there is M € [”H()\+)]<”

AT M <Z§tgt 20%. In particular, 2 [ (AN M) <£§t§f Ql.

By the choice of 2, we have | M| > | AN M| > Ny.

By elementarity, there is C C [M]*0 N M which is a club in [M]%.
By a theorem of Baumgartner, it follows that

K>|M|>]|C|> 2%, O

L)



Stationary subsets of [X]%
» C C [X]Mis club in [X]M if (1) for every u € [X]™°, thereis v € C
with v C v; and (2) for any countable increasing chain F in C we
have | J F € C.

> S C [X]M is stationary in [X]Y0 if SN C # 0 for all club C C [X]%°.

» A set M is internally unbounded if M N [M]®¢ is cofinal in [M]%0
(w.rt. Q)

> A set M is internally stationary if M N [M]% is stationary in [M]%°

> A set M is internally club if M N [M]X contains a club in [M]%.

* Diagonal Reflction Pincipl” 12 % ¥ %




Baumgartner’'s Theorem

> Krk>|M[>|ANM| >R,
> there is a club C C [M]¥ with C C M

Theorem 1 (J.E. Baumgartner). Let 83 < Ao < A and Ao be
regular. Then any club subset of [\]<° has cardinality > \¥°.

> k> |M|>|C|>2%,
Y%



