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Su percompact ca rdinals Resuretion and Maximalty (431)

» A cardinal x is supercompact if, for any A > k, there are classes j,
Mst. @j:VS5. M @ j(k)>Xand ®*MC M.

> Notation. “j: N i>,£ M" denotes the condition that NN and M are
transitive (sets or classes); j is a non-trivial elementary embedding of
the structure (N, €) into the structure (M, €); k € N, and crit(j) = k.

» A supercompact cardinal is a large large cardinal .

» A supercompact cardinal x enjoys a very strong reflection property
down to < k: For example:

Proposition 1. Suppose that x is a supercompact cardinal. For any
set X of size > k and p < k, if S C [X]* is stationary, then there
is Y C X of cardinality <k s.t. SN [Y]* is stationary in [Y]*,
and there are stationarily many (actually, normal ultrafilter many)
such Y € [X]<".

Sketch of Proof.



Generically supercompact cardinals Reurectinnd Moty (5/31)

» For a class P of p.o.s, a cardinal k is P-generically supercompact
(P-gen. supercompact, for short) if, for every A > k, there is
P e P s.t., for (V,P)-generic G, there are j, M C V[G] s.t.
Dj:VSH. M, @ j(k)> A and @ j")\ e M.

> P-generically supercompact cardinal x can be a small cardinal. The
following constructions of models will be later revisited:

Example 2. Suppose k is a supercompact cardinal and P = Col(Xy, k)
(collapsing of all cardinals strictly between ®; and x by count. conditions).
Then for a (V,P)-generic G, we have x = (R,)VI®l and
V[G] “ k is o-closed-gen. supercompact”. I5)

Example 3. If PFA or MM is forced starting from an almost-huge car-
dinal k with an iteration along with an almost-huge Laver-function,
then we obtain a model in which  is the continuum (= R;) and
it is proper (or semi-proper)-generic supercompact cardinal. I},



Generic supercompactness as a strong reflection principle  Reurmetinad Naindy (6/31)

Theorem 4. (B. Konig [B.Kédnig] ) The following are equivalent:
(a) Game Reflection Principle (GRP) holds.

(b) Ny is o-closed-gen. supercompact.

» GRP is actually a reflection statement about the non-existence of
winning strategy of certain games of length w; down to subgames

of size < N2. »| GRP implies (practically) all known reflection principles with reflection
down to < N available under CH.

> GRP implies Rado's Conjecture (RC) (Bernhard Konig [B.Konig] ).

> GRP implies strong downward Léwenheim-Skolem Theorem of
L5211 down to < Ry (SDLS(L5%1!, < Xp) in the notation of [1]).

> Both RC and SDLS(ﬁ?ﬁ;gI, < Wy) imply Fodor-type Reflection
Principle (FRP).

> FRP is known to be equivalent to many “mathematical” reflection
principles (with reflection down to < N»).




Generic supercompactness as a strong reflection principle (2/2)  Reeciona aindiy (31

» Are there perhaps some yet stronger
reflection principle — or some magic
amalgamation of reflection and ab-

? ? soluteness priciples — which would
imply both reflection and (double-)
plused versions of forcing axiom 7?7

Game Reflection Principle (GRP<“'(< Ny))
< wy is generically supercompact
by o-closed forcing

\m

Ro,IT
SDLS (Liur ™, <) MA (g-closed) MM

[B. Konig] < DRP(ICy,) + CH Iy \ /
\ I

MA* (o-closed)
SDLS™ (£, <Xy) < DRP (ICy,)

Rado Conjecture (RC(< Ng) /
RPic,

Axiom R & RPw,,

/\/

Semi-stationary Reflection (SSR) Fodor-type Reflection Principle (FRP)

many "mathematical" reflection theorems with reflection down to < R



Laver—generic Iarge cardinals Resurecton and Maximalty (8/31)

» The existence of Laver-generic large cardinal we now introduce is
such a reflection and absoluteness principle.

» A (definable) class P of p.o.s is said to be iterable if @ P is closed
w.r.t. forcing equivalence (i.e. if P € P and P ~ P’ then P € P),
@ closed w.r.t. restriction (i.e. if P € P then P | p € P for any
p € P), and, ® for any P € P and P-name Q,
Fp“Q € P” implies PxQ € P. B

> For an iterable class P of p.o.s, a cardinal & is said to be
P-Laver-gen. supercompact if, for any A\ > k and P € P, there
is a P-name Q with [Fp“Q € P s.t., for (V,P x Q)-generic H,
there are j, M C V[H] with

(a) j:V .M, (b) j(k)> A and
() Px @, H, j”\ € M.  (cf. the definition of P-gen. supercompactness)

* The definition of P-Laver-generic supercompactness given here is called
strong P-Laver-generic supercompactness in [II].



Laver—generic Iarge cardinals (2/4) Resurecton and Maximalty (9/31)

» We can also translate other notions of large cardinal into
Laver-generic large cardinal context:

» A cardinal k is superhuge (super-almost-huge) if, for any A > &,
there are classes j, M st. @ j:V S5, M, @ j(k) > X and
®@IiEMC M (J'(H)> M C M).

The upper-half of the “Higher Infinite”

> For an iterable class P of p.o.s, x is P-Laver-gen. superhuge
(P-Laver-gen. super-almost-huge) if, for any A > k, P € P, there
is a P-name Q with [Fp“Q € P s.t., for (V,P x Q)-generic H,
there are j, M C V[H] with

(a) j:V .M, (b) j(k)> A and
(c') P,PxQ, H € M, and j"j(x) € M (j" € M forall p < j(k)).



Laver—generic Iarge cardinals (3/4) Resurection and Mavimalty (10/31)

» For an iterable P, a P-Laver-gen. supercompact cardinal (P-Laver-
gen. huge cardinal, etc., resp.) is tightly P-Laver-gen. supercom-
pact (tightly P-Laver-gen. huge, etc., resp.) if the condition

(d) P« Qis forcing equivalent to a p.o. of cardinality < j(k).

additionally holds for the elementary embedding j in the definition.

tightlﬁ P-Laver-gen. tightly P-Laver-gen. tightly P-Laver-gen. tightly P-Laver-gen.
superhuge = super-almost-huge = supercompact = measurable

4 \
P-Laver-gen. superhuge = P-Laver-gen. super-almost-huge = P-Laver-gen. supercompact = P-Laver-gen. measurable

J 2
P-gen. superhuge = P-gen. super-almost-huge = P-gen. supercompact = P-gen. measurable

> Actually Laver-generic large cardinal is first-order definable (i.e. it has
a characterization formalizable in the language of ZFC, [S.F.-Sakai 2] ).

> Thus “Forcing Theorems” are available for arguments with Laver-genericity.
Because of this and because an iterable P is closed under restriction by
definition, we may be lazy about the quantification on generic filters like
“for a/any (V,P * Q)-generic H ..."



Models of Laver-gen. Iarge cardinal Resuretion and Maximalty (11/31)

Theorem 5. (Theorem 5.2, [II]) (1) Suppose k is supercompact
( superhuge, etc., resp.) and P = Col(Ry, k). Then, in V[G], for
any (V,P)-generic G, N;/[G] (= k) is tightly o-closed-Laver-gen.
supercompact ( superhuge, etc., resp.) and CH holds.

(2) Suppose k is super-almost-huge (superhuge, resp.) with a
Laver-function f : kK — V|, for super-almost-hugeness (superhuge-
ness, resp.), and P is the RCS-iteration for forcing MM along with
f. Then, in V[G] for any (V,P)-generic G, N;/[G] (= k) is tightly
semi-proper-Laver-gen. super-almost-huge (superhuge, resp.) and

N
2 0 — N2 hO|dS. * |t seems that the construction does not work with supercompact « here.

(3) Suppose that & is supercompact ( superhuge, etc. resp.) with a
Laver-function f : Kk — V/ for supercompactness ( superhugeness,
etc. resp.), and P is a FS-iteration for forcing MA along with f.
Then, in V[G] for any (V,P)-generic G, 2% (= k) is tightly ccc-
Laver-gen. supercompact ( superhuge, etc. resp.). £ = 2%°, and
Kk is very large .



Trichotomy Theorem Resurectionand Mavimalty (12/31)
» Existence of P-Laver-gen. large cardinal for reasonable P highlights
three possible size of the continuum: Ry, N, or very large.

Theorem 6. ([II]) (A) If x is P-Laver-gen. supercompact for an
iterable class P of p.o.s such that (a) all P € P are w; preserving,
(b) all P € P do not add reals, and (c) there is a P; € P which
collapses wy, then x = N» and CH holds.

(B) If kis P-Laver-gen. supercompact for an iterable class P of
p.o.s such that (a) all P € P are wsi-preserving, (b’) there is a
Py € P which add a real, and (c) there is a P; which collapses
wy, then k = Ry < 2% |f P contains enough many proper p.o.s
then Kk = Ny = 2Ro (For the last assertion see the next slide.).

() If kis P-Laver-gen. supercompact for an iterable class P of
p.o.s such that (a’) all P € P preserve cardinals, and (b’) there
is a Pg € P which adds a real, then & is “very large” and xk < 2%
If & is tightly P-Laver-gen. superhuge then x = 20, [




Forcing Axioms under Laver-genericity Resurection and Matinaty (13/31)
» Suppose that P is a class of p.o.s, and «, p are cardinals.

MATH(P, < k): For any P € P, any family D of dense subsets of P
with |D| < k and any family S of P-names s.t. |S| < p and
|Fp*S is a stationary subset of w;” for all S € S, there is a
D-generic filter G over P s.t. S[G] is a stationary subset of w; for
all S e S.

MATT<K(P < k): For any P € P, any family D of dense subsets
of P with |D| < k and any family & of P-names s.t. |S| < p
and [Fp“ $ is a stationary subset of P, ¢(6s)” for some w < ns <
s < p with ns regular, for all $§ € S,Nthere is a D-generic filter
G over P s.t. S[G] is stationary in P;.(6s) for all S € S.

> If 5 = max{Ry, 2%}, we drop “< x" and write simply MA™#(P) or
MA*+4(P).



Forcing Axioms under Laver-genericity Resurection and Matinaty (14,31)

» Clearly MATHT<%2(P < k) is equivalent to MAT“1(P, < k).

Theorem 7. (Theorem 5.7 in [11]) (1) For an iterable class P whose
elemetns are all ccc, if Kk > Ny is P-Laver-generically supercom-
pact, then MATT<H(P <k) holds.

(2) If Xy is Laver-generically supercompact for an iterable class P
of p.o.s, then  MAT“1(P) holds.



The Trichotomy Resurection and Mavimalty (15/31)

the consistency of this combination
follows from a’superhuge cardinal |

o-closed-Laver generically

tightly ccc-Laver generically
supercompact cardinal exists

semi-proper-Laver generically superhuge cardinal exists

supercompact cardinal exists

\ + FRP
Game Reflection Principle (GRP<“ (< Xy)) (m
< wy is generically supercompact
by o-closed forcing MM+W1 m
\m
Go to the last frame -
SDLS (Lfar™, <Xo) MAM(a closed) MM
[B. Konig] < DRP (ICy,) + CH V
\ MA* (o closed)
SDLS™ (£, <Ry) < DRP (ICy,)

Rado Conjecture (RC(<Ny))

= Ro
/ 2%0 carries an Ni-saturated
RP normal ideal,
1Cx, ++
\ e o MATH<"(cce, < k),
Axiom R < RPyy, SDLS““‘ L«:tatv K),
</\ /

SDLSY*(LEKE < k) + FRP
Semi-stationary Reflection (SSR) Fodor-type Reflection Principle (FRP)
2

many "mathematical" reflection theorems with reflection down to < Ny =} = =




Resurrection Resuretion and Maimalty (16/31)

» The following Axioms and their variants are introduced and studied
by J. Hamkins and T. Johnstone (see [Hamkins-Johnstone 1],
[Hamkins-Johnstone 2] ).

» For a class P of p.o.s and a definition ® of a cardinal (e.g. as Ny,
Ny, 2%, (2%0)* etc.) the Resurrection Axiom for P and H(u®) is
defined by:

RAZ(H.) : For any P € P, there is a P-name Q of p.o. st
Fp“Q € P” and, for any (V,P * Q)-generic H, we have

H(u)Y < H(pe)VIE



Resurrection (2/2) Resuretion and Maxmalty (17/31)

> The following boldface version of the Resurrection Axioms are also
considered in [hamkins-johnstone 2].

» For a class P of p.o.s and a definition p® of a cardinal (e.g. as Ny,
N, 2%, (2%0)* etc.) the Resurrection Axiom in Boldface for P
and H(u®) is defined by:

RAZ(M-) : For any A C H(u®) and any P € P, there is a P-name
Q of p.o. st. [Fp“Q € P” and, for any (V,P x Q)-generic H,

there is A* in V[H] with A* C H(u*)VIH and (H(u®)Y, A, €) <
(H(p*)VEL A% €).

> Clearly RAZ(#') implies RAZ(M.).

Theorem 8. For an iterable class of p.o.s P, if keji := max{2% N,
is tightly 7P-Laver-gen. superhuge, then [RAZ(MM holds.



How huge is ultrahuge?

Resuretion and Maimalty (18/31)
» A cardinal  is n-huge if there is j : V 5, M st. "M C M.
(Thus, k is huge < & is 1-huge.)

» A cardinal k is super n-huge if for any A > k there is j : V XM
s.t. j(k) > X and /"(F)M C M.
» A cardinal x is super n-almost-huge if for any A\ > k there is
V5. Mst j(k) > Xand"®)>M C M.
JiV S Mst j(r) > X and J9M, Vi) C M.

» ([Tsaprounis 2]) A cardinal & is ultrahuge if for any A > & there is

Theorem 9. (K. Tsaprounis [Tsaprounis 2], Theorem 3.4) If & is 2-
almost-huge then there is a normal ultrafilter U over x s.t.
{a <k : V, E“ais ultrahuge”} e U.

The upper-half of the “Higher Infinite” with ultrahugeness added.



Laver-gen. ultrah uge cardinal Resuretion and Maxmalty (19/31)

» We consider the following Laver-gen. variant of ultrahuge cardinal:

> For an iterable class P of p.o.s, a cardinal x is (tightly) P-Laver
gen. ultrahuge, if, for any A > x and P € P there is P-name @
with |Fp“Q € P” and, for (V,P x Q)-generic H, there are

JyMCVH] s.t. j: VS50 M, j(r) > X PH, (Vjy) VI e M
(and P x Q is forcing equivalent to a p.o. of size j(k)).

~



Models of Laver-gen. ultrahuge cardinal Reurecin and Masindlty (20/31)

» For the construction of models with a Laver-gen. ultrahuge cardinal,
we use the following easy lemma:

Lemma 12. Suppose that x is ultrahugex. Then there are cofinally
many inaccessible cardinals in V.

*super almost-huge is enough see Lemma 2 in the additional slides.
Proof. It is enough to show that the target j(k) of an ultrahuge
elementary embedding j : V =5, M C V[H] is inaccessible in V[H].
» M [=%j(k) is inaccessible” by elementarity.
> It follows that (V(,\))M E=“j(k) is inaccessible”.
> Since (Vi)Y = (Vi)Y [ it follows that
(V(A))V[H] ): J(r) is |nacceSS|b|e
» Thus, V[H] =% j(k) is inaccessible”. [@ (Lemma 12)

Lemma 13. ([Tsaprounis 2], Theorem 5.2) If  is an ultrahuge cardi-
nal then there is an ultrahuge Laver-function f : kK — V. [



Models of Laver-gen. ultrahuge cardinal (2/2) R o Vatinly (21/31)

Theorem 14. (1) Suppose « is ultrahuge and P = Col(Xy, k).
Then, in V[G], for any (V,P)-generic G, N;/[G] (= k) is tightly
o-closed-Laver-gen. ultrahuge and CH holds.

(2) Suppose k is ultrahuge with an ultrahuge Laver-function f :
k — V, and P is the RCS-iteration for forcing MM along with
f. Then, in V[G] for any (V,PP)-generic G, N;/[G] (= k) is tightly
semi-proper-Laver-gen. ultrahuge and 2% = &, holds.

(3) Suppose that x is ultrahuge with an ultrahuge Laver-function
f: k — Vg, and P is a FS-iteration for forcing MA along with
f. Then, in V[G] for any (V,P)-generic G, 2% (= &) is tightly
ccc-Laver-gen. ultrahuge. k = 2%, and & is very large .



Unbounded resurrection Resurection and Maimalty (22/31)
» The following strengthening of the Resurrection Axiom is introduced
in [Tsaprounis 1]:

> For an iterable class P of p.o.s, the Unbounded Resurrection Axiom
for P is the following assertion. Remember: r5 1= max{2%0, Ry}

UR(P) : For any A > K1, and P € P, there exists a P-name Q with
Fp“Q € P s.t., for (V P x Q)-gen. H, there are \* € On and

jo € V[H] s.t. jo : H(\)V —>,§wf[ HO)VEL and jo(keer) > .

» The following tight version of the Unbounded Resurrection Axiom
for P will be also considered.

TUR(P) : For any A > kygi, and P € P, there exists a P-name Q
with [Fp“Q € P” s.t., for (V,P* Q)-gen. H, there are \* € On,

and jo € V[H] s.t. jp : H(A)V S eer (VD , Jo(Keejt) > A, and
P+ Q is forcing equivalent to a p.o. of size jo(Fuejt)-



Unbounded resurrection (2/3) Rearetin o vy (23/31)
» Both of the principles can be yet extended to boldface versions:
UR(P) : For any A > ke, A C H(A), and P € P, there exists a

P-name Q with [Fp“Q € P” s.t., for (V,P x Q)-gen. filter H,

there are \* € On, A* C H(\*)VIH and jo € V[H] s.t.
Jot (HOWV, A €) B (HOV)VEL A, €), and jo(kuet) > .

TUR(P) : For any X > ki, A C H(A), and P € P, there exists a
P-name Q with [Fp“Q € P” s.t., for (V,P * Q)-gen. filter H,
there are \* € On, A* C H(M\*)VIHl and jo € V[H] s.t.

Jot (HOVL A €) Sre (HO)VEL A% €), jo(keei) > A, and
PxQis forcing equivalent to a p.o. of size jo(Keeft )-

» However, we can prove the equivalence UR(P) «» UR(P) and
TUR(P) « TUR(P).



Unbounded resurrection (3/3) Reurecion adMacaty (24/31)

Theorem 15. For an iterable class P, if fye is (resp. tightly) P-Laver
gen. ultrahuge, then UR(P) (resp. TUR(P)) holds.

Proof. Suppose that kg is (tightly) P-Laver gen. ultrahuge.
> Assume A > ki, A C H(A), and P € P.
> Let Q be a P-name s.t. [-p“Q € P” and, for (V, P+ Q)-gen. filter
H, there are j, M C V[H] s.t. j : V <—>,mf[ M, j(Keesi) > A,
P, H, VJ(/\) eM
(and P x Q forcing equivalent to a p.o. of cardinality j(rw ))-
Note that H(j(\))VI¥] € M, and hence H(j(A))M = H(j(\))VIH
» Letting jo ==/ | H(\)V, \* :=j()\) and A* := j(A), we have
Jot (), A €) S (H()VIEL A% €) and
jO(Ktef[) :.j(’{tef[) > A
» This shows that UR(P) (TUR(P)) holds. (Theorem 15)



Bounded maximality Resuretion and Maimalty (25/31)

» An Lc-formula ¢ = ¢(x) is a local property of cardinals if, for any
limit ordinal § and a cardinal u < 4, we have (Vs = ¢(p)) «
(1) and that this fact is provable in ZFC.

> Being an inaccessible cardinal is a local property of cardinals, as well
as being a Mahlo cardinal or being a measurable cardinal. In
contrast, being a supercompact cardinal is not a local property of
cardinals.

» A local property of cardinals ¢ = ¢(x) is a local definition of a
cardinal if there is provably at most one cardinal which satisfies
the formula.

> “The least inaccessible carinal” is a local definition of a cardinal as
well as “the least measurable cardinal” but not “the least
supercompact cardinal’.



Bounded maximality (2/3) Resurectonand Maximalty (26,/31)

» The property of an ultrahuge cardinal in Lemma 12 can be seen as
an “upward reflection”. We actually have much stronger upward
reflection property of an ultrahuge cardinal:

A Generalization of Lemma 12. If ¢ is a local notion of cardinal
and "k is ultrahuge” implies ¢(k) then there are cofinally many
cardinals A with () in V. i)

> If p(x) is a local definition of a cardinal, we denote the cardinal
defined by ¢(x) with &;(X), /L;(X), etc. or just with x°®, u®, etc. if
we want to drop the explicit mention of the formula ¢(x) which
defines the term. In the latter notation we identify the term x® with
its definition (x) and say also that x* is a local definition of the
cardinal.

> J,(wp) for any concretely given finite or countable ordinal «, /3 is
another example of a local definition of a cardinal.



Bounded maximality (3/3) Resurectionand Mavimalty (27/31)

Theorem 16. Suppose that P is an iterable class of p.o.s and & is tightly
P-Laver gen. ultrahuge. Then, for any Le-formula ¢(xo, ..., Xa—1),
a9,...,an—1 € H(k), and a local definition pu® of a cardinal, if there
isPePst.,

Fpsg“ Ve E ¢(30, -, 8p—1) 7, for all P-name Q with [Fp“Q € P”,
we have (V,)V = ¢(a0, -\ an—1)-

Proof. Let k, ¢, ao,..., a1, 11°, P as above. Let A > (1*)V be a limit
ordinal. Then there is a P-name Q with [Fp“Q € P s.t., for

(V. PP+ Q)-generic H, there are j, M C V[H] s.t. © j:V =5, M,
@ j(k) > A, @ P, H, (Vi)' € M, and @ P « Q is forcing equivalent
to a p.o. of size j(k).

» By the choice of A and @ , we have j(\) > (u*)M. By ® and @ , we
have (Vjx)" = (Vi) VI Since p® is a local definiton, it follows that
(u*)M = (u*)VIF Thus, by the choice of P, we have
M =4 V,e = ¢(ao, ..., an—1)". Since a; = j(a;) for i < n by @ , it follows
by the elementarity that (V,+)V = ¢(a0, ..., an—1). (Theorem 16)



Tightly Laver-gen. ultrahugeness unifies everything Resurecton and Masinalty (28/31)

(tightly) o-closed-Laver gen. (tightly) semi-proper-Laver gen. tightly cce-Laver generically

ultrahuge cardinal exists ultrahuge cardinal exists ultrahuge cardinal exists
O Ui
/ tightly ccc-Laver generically

o-closed-Laver generically semi-proper-Laver generically superhuge cardinal exists
supercompact cardinal exists  supercompact cardinal exists 4+ FRP

Game Reflection Principle (GRP<“*(< Xy)) i
<> wsy is generically supercompact
[11]
by o-closed forcing MM 1

The Unbouded Resurrection 1
Axiom in Boldface for P \ / \
A local version of Maximalit
Princ 1pl: fobr * y SDLS (‘Cftuutnﬂ <Ny) MAJ”“J (o- closed

[B. Késnig] = DRP(ICNU) + CH [5.Cox]

(i MA* (o closed)
SDLS™ (,Cs,m <N,) < DRP (ICy,)
Rado Conjecture (RC(< X,)) / 280 carries an Rp-saturated

. normal ideal,

1 :
\ P MATH<"(ccc, <K),
(/\AX?R & RPy,, / SDLS™ (LY, < k).

int pPPKL
Semi-stationary Reflection (SSR) Fodor-type Reflection Principle (FRP) SDLSY (Lstar”><#) + FRP

many "mathematical" reflection theorems with reflection down to < Ny
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A Sketch of the Proof of Theorem 14.

» We prove Theorem 14. (3). The proof of (1) and (2) can be done
similarly.

> Suppose that « is ultrahuge and f : kK — Vj is an ultrahuge
Laver-function. In particular, this means:

For any set a gnd A > kK, there are j, M C Vst j:V M, J(f)(k) = a,
j(k) > X, and M, V) C M.

> Let (Po,Qp : o <k, 8 < k) be a FS-iteration with

_ { f(8), if e, f(B)isacccpo,;”
Qp =

1, otherwise.

> We show that P,; forces that « is tightly ccc-Laver generically ultrahuge.

> Let G, be a (V,P,)-generic filter. Suppose A > « and IP be a ccc p.o. in
V[G,]. Let P be a P,-name of P.

> By Lemma 12, we may assume that A is inaccessible.
> Letj:V S, Mbes.t. j(f) (k) =P, j(k) > A and  (¥) (M, Vjr 1) C M.



A Sketch of the Proof of Theorem 14. (2/3)

»| G, is a (V,P,)-generic filter. A > x and P is a ccc p.o. in V[G,]. Pis a
P,.-name of . )\ is inaccessible.

>|Let j:V S5, Mbest. j(f)(k) =P, j(k) > A, and  (*¥) JIM, Vj(n 1y C M.

» By elementarity, we have
M % j(Py) is a FS-iteration of ccc p.o.s (P, Qf @ o < j(k), B < j(K))
with the book-keeping j(f)”.
> Note that P}, =P, for all « < i, P, € M, and @:' =P
Thus, by the Factor Lemma
M[G,] =“ j(P,)/G, is (forcing equivalent to) a FS-iteration of ccc
p.o.s of length j(x) and its Oth iterand is P”.
> By the ccc of P, and (*), we have *(M[G,]) C M[G,].
In particular, “(M[G,]) € M|[G,], and

V[G,] E“ j(P,)/G, is (forcing equivalent to) a FS-iteration of ccc
p.o.s of length j(x) and its Oth iterand is P”.
> It follows that, in V[G,], we have j(Py)/G, ~ P x Q" where
V[Gi] E |Fp* Q" is ccc™.



A Sketch of the Proof of Theorem 14. (3/3)

| It follows that, in V[G,], we have j(P.)/G, ~ P+ Q" where
VIG.] F |2 Q" is cce™. (%) 1OM, Viria) € M.

> Let H be a (V[G,],j(Px)/G,)-geneneric filter:
> Note that I corresponds to a (V[G], P« Q*)-generic filter, and G,; * H

corresponds to a (V,j(P,))-generic filter extending G.
| shall denote the latter also with G = H.

» Let j be the “lifting” of j defined by
J:V[G,] = M[G, +H]; a[G.] — j(a)[G.+H] for all P;-name a.
> Then we have j CJ, :V[G.] =5, M[G, *H],
JA=J"NEM C MG« H, |j(Pi)/Gi [ < | ()Y = ()
> G, «H seen as a (V,j(P,))-gen. filter has cardinality j(x) < j()\) and it is
€ Vio-
> Thus, there is a a j(IP; + Q)-name V of (\/j(k))V[GN*H] in Vioy4r-

> It follows (\/j(,\))V[G”*H] = VI[G, «H] € M[G,, = H].
> This shows that V[G,] %k is tightly ccc-Laver-gen. ultrahuge”.

[[] (Theorem 14..)



Proof of Theorem 8.
» Suppose A C H(keji) and P € P. By tightly P-Laver-gen.
superhugeness of iy, there is a P-name Q of a p.o. with
Fp“ Qe P st for (V,PxQ)-generic H, there are j, M C V[H]
with @ :V im“f[ M, @ Px Q is forcing equivalent to a p.o.
of size j(keest), @ P, He M, and @ j"j(kesi) € M.
(® By @, we may assume that the underlying set of IP x Q is j(Feeft)-

> Since crit(j) = ke, j(a) = a for all a € (H(keet))V-
Claim. H(j(eeji )V C M and hence H(j(#eejt))" = H(i(reest)) VI
I Suppose that b € H(j(rw )V and let ¢ C j(kwji) be a code

of b. Let ¢ be a nice P+ Q-name of c. By @), | ¢| < j(kuji). By
@, it follows that ¢ € M. Thus c € M by ® , and hence be M. -

» Thus,
J I H("Qtef[ )V . (H(Ktef[ )V7 A, E) i> (H(j("ftef[ ))V[H]J(A)’ G)- [0
—

Krefl )V



Proof of Theorem 7
» We prove Theorem 7., (1). (2) can be proved similarly.
» Assume that x > Ny is P-Laver-generically supercompact and
elements of P are ccc.
> Suppose that P € P, D is a family of dense subsets of P with
|D| < k, and S is a family fo P-names s.t. | S| < &, and, for each
S €8, there are w < s < 05 < £ s.t. ns is regular, and
- S is a stationary subset of 7, 4(6s)".

» W.lo.g.,, @ the underlying set of P is a cardinal A > x and
elements of S are nice names.

> Let Q be a P-name s.t. |-p*Q € P7, and, for a (V, P« Q)-generic
filter H, there are j, M C V[H] s.t. @ j : V 5oM, @ j(k) >\,
@PHEcM, and ® j"\ € M.

> Let G be the P part of H. G € M by @ . j"P C j(P), and j"P,
j I P € M by the choice @ of P, and & .



Proof of Theorem 7 (2/2)
> j(D) = {j(D) : D €D}, and j"D C j(D) for all D € D.
J(8)=4{(S) : S8}, and j"S C j(S) forall S € S and hence
i) i"S Ci(S) C Pné(eg)”-

» Note that j”S[j"G] = S[G] and
S[G] is stationary subset of P,.(6s) (in V[G] by genericity of G,
and hence also in M) for all S €s.
> Thus, in M, j”G generates a j(D)-generic filter on j(PP) which
establishes the stationarity of interpretations of elements of j(S).
> It follows that
M = there is a j(D)-generic filter on j(PP) which establishes
the stationarity of interpretations of elements of j(S)”.
> By elementarity,
V = there is a D-generic filter on P which establishes
the stationarity of interpretations of all elements of S”.

(0] (Theorem 7)



A Sketch of the Proof of Theorem 5
» We prove Theorem 5.(3). The proof of (1) and (2) can be done
similarly.
> Suppose that « is supercompact and f : k — V,; is a supercompact
Laver-function. In particular, this means:

For any set a and A > x, there are j, M C V st. j:V S5, M, j(f)(k) = a,
j(k) > X, and *M C M.

> Let (Pa,@g ©a < K, < K) be a FS-iteration with

Qs = { f(8), if |Fp,“f(B)isacccpo.;”

1, otherwise.

~

» We show that PP, forces that « is tightly ccc-Laver generically
supercompact. (the proof for “ccc-Laver gen. superhuge” etc. can
be done similarly starting from a superhuge cardinal with superhuge
Laver-function, etc.)
» Let G, be a (V,P,)-generic filter. Suppose A > k and P is a ccc
p.o. in V[G,]. Let P be a P,.-name of P.

> Letj:V 5, Mbest j(f)(k) =P, j(x) > X and (¥) *M C M.



A Sketch of the Proof of Theorem 5 (2/3)

» | Let G, be a (V,P;)-generic filter. Suppose A > x and P is a ccc
p.o. in V[G,]. Let P be a P,,-name of PP.

>|Let j: VS5, M be st j(f) (k) =P, j(x) > A and (¥) *M C M.

» By elementarity, we have
M = j(P,) is a FS-iteration of ccc p.o.s (P, Qf : a < j(k), 8 < j(k))
with the book-keeping j(f)".
> Note that P}, =P, for all « < k, P, € M, and Q}, = P.
Thus, by the Factor Lemma -
M|G,] E“ j(Px)/Gy is (forcing equivalent to) a FS-iteration of ccc
p.o.s of length j(x) and its Oth iterand is P”.
> By the ccc of P, and (*), we have N(M[G,]) € M[G,].
In particular, “(M[G,]) € M[G,], and
V[G,] E=“ j(Px)/Gy is (forcing equivalent to) a FS-iteration of ccc
p.o.s of length j(x) and its Oth iterand is P”.

* This is the place where the corresponding proof of (2) needs the condition
“(K)> M C M to show the iteration is RCS-support of semi-proper forcing in V[G.].

> It follows that, in V[G,], we have j(Px)/Gx ~ P+ Q" where
V[Gi] = |Fp“ Q" is ccc™.



A Sketch of the Proof of Theorem 5 (3/3)

&> | It follows that, in V[G,], we have j(IP;)/G, ~ P * Q" where
V[G,] E |Fp“ Q" is ccc™.

» Let H be a (V[Gx],j(P,)/Gy)-geneneric filter:

> Note that H corresponds to a (V[G], P« Q*)-generic filter, and
Gy, * H corresponds to a (V,j(P,))-generic filter extending G,.

| shall denote the latter also with G « H.
» Let J be the “lifting” of j defined by
J:VIG] = MG +H]; a[Gy] = j(2)[Gy * H]
for all P,-name a.
> Then we have j C ], j:V[G] =, M[G, * H],
J'"A=j"Ae M C M[G, «H],
(PG |V < 1j(Be) M = ().
» This shows that

V[G,] E“ K is tightly ccc-Laver-gen. supercompact”.

(Theorem 5.)



A ccc-gen. large cardinal is very large (but not necessarily a large cardinal)

Theorem 2X. (Theorem 3.5 in [S.F.-Sakai] If k is a v-cc-gen. mea-
surable cardinal for a v < k, then « is greatly weakly Mahlo. I}

Theorem 3R. (Theorem 3.7 in [S.F.-Sakai] Suppose that « is a v-cc-
gen. measurable cardinal for some regular v < k. Then & is the
stationary limit of v-cc-gen. weakly compact cardinals below it. [{]



The upper-half of the “Higher Infinite” [Higher-Inf]



The upper-half of the “Higher Infinite” [Higher-Inf]

o=1—0
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2-huge —, almost-huge
superhuge +— ultrahuge

huge —

i‘__ super almost-huge

almost huge
Vopénka’s Principle /
y

extendible
i > supercompact
/ \ strongly compact
superstrong \

Woodin
{

strong

ot exists

measurable

Ramsey
— Rowbottom
Jonsson —
Kk —> (1)

2
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0 exists —_



Consistency of 3 tightly ccc-Laver-gen. superhuge + FRP

» Suppose that « is a superhuge cardinal.

» Then there are stationarily many supercompact cardinals below
([Barbanel-DiPrisco-Tan], Theorem 7e.).

> Let kg be one of them.

» Use rg to force FRP (it is enough to force MA™ (o-closed) — see
([S.F.-Juhasz-et al.])

Use « to force “3 tightly ccc-Laver-gen. superhuge” by FS-iteration
of ccc p.o.s along with a superhuge Laver-function.

FRP survives the second generic extension since FRP is preserved by
ccc generic extensions (see ([S.F.-Juhasz-et al.], Theorem 3.4)

i}



[Higher-Inf] Proposition 26.11

» One of the strongest statements similar to Lemma 1 for a
supercompact cardinal is the following:

Proposition 1X. (Proposition 26.11 in [Higher-Inf])

If x is 2%-supercompact, then there is a normal ultrafilter I/ over
K s.t.

{a < K : «is superstrong} € U.

» For cardinals k < A, K is A\-supercompact if thereisa j : V 5. M,
s.t. j(k) > X and "M C M.

» A cardinal & is superstrong if thereisa j : V % M with Vi) ©M

The upper-half of the “Higher Infinite”




A Sketch of the Proof of Proposition 1.
» Suppose that « is a supercompact cardinal, © < x and S C [X]* is
stationary in [X]".
» Let A\=|X]|. W.log, A > k.
> Let ©:V 5, Mbest @ j(k) >\ and ® *M C M.
> We have j”X C j(X) and j(u) = p by @. j”X € M by ®. Note
(XUS,S,€)=("XulS)N["X]"),i(S)N[j"X]*, €).
» Thus we have:
M Ej(S)N[j"X]* is stationary in [j”X]*".
> Hence
M E=“thereis Y C j(X), | Y| =X <j(k) s.t. j(S)N[Y]* is stationary”.
> By elementarity @, it follows that
Vi=“thereis Y C X, | Y| < kst. SN[Y]* is stationary”.

» | The last assertion of Proposition 1. is proved using the normal ultrafilter:
U={ACX]*" "X €j(A)} 5
by showing {Y € [X]=" : SN[Y]" is stationary} € U.




A Sketch of the Proof of Proposition 1. — additional details

> VI . MCV.  IXIMC M. (k) >|X]| >k
U={AC[X]~" : j"X € j(A)}.

» U is < k-complete: Suppose A, € U for av < j1 < k. Then,
"X € Naepd(Aa) = Uli(Aa) - a <j(p)} =NJ({Aa : e <p}) =
(ﬂ{A Ca < ). > Thus ({A. 1 o < pu} e U.
» U is fine: Suppose x € X. Then
j{ae[X]<F i x€a}) ={ac[[(X)<™ : j(x)e€a}>j"X.
> Thus {a € [X]<" : x€a}el.
» Suppose A, €U for x € X. 1> Let (A, : u€j(X)) :=j({Ac : x € X)).

> Forany u € j”X, thereis x € X s.t. u = j(x). Then we have
J"X € j(Ax) = A,. This shows that j”"X € j(AxexAx). > Thus AexAx € U.

> {Y e[X]<" : SN[Y]*isstat.} € U:
() j{Y € [X]<F : Sn[Y]*isstat.}) = {Y € [(X)]</") : j(S)N[Y]* is stat.}
> By the first part of the proof, j” X € right side of (*).

This proves the Claim above.



Some Notation and Definitions
» For a set X, and a cardinal u, [X]*:={aC X : |a| = u}.

\Y

Similarly: [X]<F:={aC X : |a| < u}.
[X]<H is sometimes also denoted by P, (X).

» C C [X]* is club (closed unbounded) in [X]* if @ for a C-chain
C € [CI*, |JC € C; and @ for any a € [X]*, thereis c € C s.t.
acCec.

> S C [X]* is stationary in [X]* if SNC # ( for all club C C [X]*.

> Clubness and stationarity of subsets of [X]<# (u regular) is defined
similarly.



Some Notation and Definitions (2/2)

» An ultrafilter U over [X]<* for regular « is normal if © U is < k-
complete (i.e. for any S € [U]<", NS €U), @ U is fine (i.e. for
any x € X, {a € [X]~" : x€ a} €U), and @ for any U, € U
for x € X, AyexUx={a€[X]~" : ae U, forall xea} eU.

Lemma 4X. Suppose that U is a normal ultrafilter over [X]<". Then

(1) Foranyclub C C[X]<" we have C € U.
(2) AnyS €U is stationary subset of [X]<*.

Proof. (1): Suppose that C C [X]=" is a club. For each x € X,
let ¢, € C be s.t. x € ¢ (possible since C is a club).

> Let Uy :={a e [X]"F : cx CA}. Ug €U by @. Let Gy := Dyex Us.

» GeUUby®. G CC:
>acC = cwCaforallxca = a=J,,c € Csince Cis club.

» Since U is a filter, it follows that C € U/.
(2): follows from (1). (Lemma 4%)



