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Consistency strength of super almost-huge cardinal Reurectinnd Moty (5/21)

» [Theorem 3] is what | want to establish below.
» For cardinals k < \ and a sequence U= Uy, k<y< N st.U,isa
normal ultrafilter over P,.(7) for all k < v < A, we say that I/ is coherent if
U, =Usly ={{any:ac A} : AclUs}forall k <y <6 <A,
> For a coherent sequence of normal ultrafilters U= Uy 1 K<y <)), We
let jy : V . M.= Ult(V, U,) be the standard embedding, and, for k <~ <¢
< A, we define k5 : M, = Ms by ky5([flu,) := [(F(xN7) : x € Pu(0))]uts-
> Then we have js = kys5 0 .

Theorem 1. ([Higher-Inf], Theorem 24.11 reformulated) For a cardinal
number k and inaccessible A > « the following are equivalent:

(a) kisa almost-huge cardinal with almost-huge elementary embedding
J with the target j(k) = .
b There is a coherent sequence (U, : k <~y < A) of normal ultrafilters s.t.
0% Y

@ for all k <y < X and @ with v < a < j,(k), there is v < § < A s.t.
kys(ar) = 4. O



Consistency strength of super almost-huge cardinal (2/3)  Reeciona ainaiy (6/21)

Lemma 2. If s is an (almost) huge cardinal and @ : V 55, M is a(n
almost) huge elementary embedding. Thus, in particular,
@ JW>M C M. Then (1) j(x) is inaccessible.

(2)
(3) ME“{a<j(k): ais measurable} is stationary in j(k)”.
4)

(

Proof. (1): Since « is inaccessible. M = j(k) is inaccessible” by
elementarity @ . By ® , it follows that j(k) is really inaccessible.

{a < Kk : « is measurable} is normal measure 1 subset of k.

{a < j(K) : «is measurable} is cofinal in j(k).

(2): k is measurable and an ultrafilter witnessing this is an element
of M by ® and (1). Thus M =k is measurable”.

U:={ACk : ke j(A)}is a normal ultrafilter over x and

{a < Kk : a is measurable} € U. (3): By (2),

{a < Kk : « is measurable} is a stationary subset of x. By
elementarity @ , it follows that M = {a < j(k) : « is measurable}
is stationary C j(k)”. (4): follows from (3) and ® . [ (Lemma 2)
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Theorem 3. Suppose that « is huge. Then, {a < k : V,, E“a is super

almost-huge”} is a normal measure 1 subset of .

Proof. Letj:V %, Mbea huge elementary embedding, so that we have
@ I®WM C M.

>
>

\%

vvyyvyy

For k < < j(k), let U, :={AC Pu(v) : j"v €j(A)}.

Then U == (U, : k<~ <j(k)) € Mby @, and U = @ (see the proof
of [Higher-Inf], Theorem 24.11).

Since @ is a closure property, M knows that there are club many
a<jk)st. Uy : k<y<a)ED.

By Lemma 2,(2), M thinks that there are stationarily many o < s which
are inaccessible (actually even measurable!). Thus

M =*there are stat. many inaccsessible o < j(k) s.t. (U, 1 K<y <a) QD7
By Theorem 1, ® M = V() |= & is super almost-huge”.

U:={ACk : ke j(A)} is anormal ultrafilter over .

By ®, {a <k : V, E“a«ais super almost-huge”} € U. (Theorem 3)
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Irreversibility of some implications Resurecton and Maimalty (9/21)

Proposition 4. Suppose that P = all o-closed p.o.s or P = all ccc p.o.s.
Then tightly P-Laver gen. supercompactness of x does not nec-
cessarily imply the P-gen. ultrahugeness of k.

> For the proof of Proposition 4, we use the following:

Lemma 5. Suppose that « is P-gen. ultrahuge for an arbitrary class P
of p.o.s. If there is an inaccessible A\g > k then there are cofinally
many inaccessible in V.

Proof of Lemma 5: Let A > \g be an arbitrary cardinal. Then there
is P € P s.t., for (V,P)-generic G, there are j, M C V[G] s.t.

©j: Ve M, @ j(k) > A and ® (V)Y€ € M.
» By @ and elementarity (6 , we have j(A\g) > .
» By elementarity 6 , M =% j()o) is inaccessible”.
> By ®, V[G] =“j(Xo) is inaccessible”, and hence
V =%j(No) is inaccessible”. [ (Lemma 5)
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Proposition 4. Suppose that P = all o-closed p.o.s or P = all ccc p.o.s.
Then tightly P-Laver gen. supercompactness of ~ does not nec-
cessarily imply the PP-gen. ultrahugeness of .

Lemma 5. Suppose that x is P-gen. ultrahuge for an arbitrary class P
of p.o.s. If there is an inaccessible Ao > ~ then there are cofinally
many inaccessible in V. [Isj|

Proof of Proposition 4: Suppose that x is a supercompact cardinal and
Ao > K is an inaccessible cardinal.

> We may assume that \g is the largest inaccessible cardinal: If there is
inaccessible cardinal larger than Ag, then let \; be the least such
inaccessible cardinal. Then, in V),, Ag is the largest inaccessible cardinal
and « is supercompact.

> V), E“k is supercompact” can be seen using the characterization of
supercompactness in terms of ultrafilters.

» By Theorem 5 (in the main slides), (a), (c), there is a po P of size & s.t.,
for (V,P)-generic G, we have V[G] =k is tightly P-Laver gen. supercompact”.

> V[G] E“ Ao is the largest inaccessible caridnal”.

> By Lemma 5 above, it follows that V[G] = & is not P-gen. ultrahuge”.
(Proposition 4)
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» Maximality Principle (MP) in its non parameterized form is formu-
lated in an infinite set of formulas asserting that all buttons are
already pushed. l.e., for any L.-sentence ¢, if, for a p.o. P,

(*) |Fo“e” for all Q with P < Q,
then ¢ holds.

> If (*) holds then we shall say that ¢ is a button with the push P.

Proposition 6. MP implies V # L. [

» For an L.-sentence ¢ let
mp, > 3P (Pisapo. AVQ(PSQ — [Fo“¥”)) — ¢.

> Formally we define: MP := {mp, : ¢ is an L.-sentence}.



Maximality Principle (2/3) Resurectonand Maimalty (12/21)

Lemma 7. Suppose that ¢ is an L.-sentence. If ZFC is consistent,
then so is ZFC + mp,,.

Proof. Suppose otherwise. Then we have ©® ZFC - —mp,,.

» Note that

—mp, <+ IP(Pisap.o. AVQ(P <Q — [Fo“¢”)) A —o.
> In ZFC, let P be a p.o. as above. Then |Fp“p”.

> On the other hand, since |Fp“v” for all v € ZFC and by ©® , 0 ,
we have |p*—p” which is equivalent to = |Fp“ .

» Thus we obtained a proof of contradiction from ZFC. This is a
contradiction to our assumption. (0] (Lemma 7.)

Lemma 8. For any L.-sentences ¢g,..., ¥n_1, We have
ZFCE (mpgy A---Ampy,_,) < MPpon-Ap,_1-

Proof. If Py,...,P,_1 are pushes of the buttons ¢y, ..., ©,_1 resp., then
Py x -+ x P,_1 is a push for g A -+ A pp_1. [ (Lemma 8)



Maximality Principle (3/3) Resurection and Maximalty (13/21)

Lemma 7. Suppose that ¢ is an L.-sentence. If ZFC is consistent,
then so is ZFC + mp,,. )|

Lemma 8. For any L.-sentences ¢y, ..., pn—1, We have
ZFCH (mpsﬁo ARERRA mp@n&) & MPooA--App—1- O]

Theorem 9. (Hamkins,[Hamkins] ) If ZFC is consistent, then so is
ZFC + MP.

Proof. By Compactness Theorem, Lemma 7 and Lemma 8.
(0] (Theorem 9)

» The same proof also shows the following:

Theorem 10. Suppose that “x-large cardinal” is a notion of large cardinal
s.t. "k is an x-large cardinal” is preserved by set-forcing of size < k.
If ZFC + “there are class many x-large cardinals” is consistent,
then so is ZFC + MP + “there are class many x-large cardinals”. [
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Theorem 11. (Hamkins, [Hamkins] )
MP is preserved by any set-generic extension.

Proof. The theorem follows immediately from the following Lemma.
(] (Theorem 11)

Lemma 12. MP is equivalent to {mp} : ¢ is a L.-sentence}

where
mp; 4> AP(Pisap.o. AVQ(P<Q — |Fo“¢"))
— VR(Risap.o. = [Fr“¢”).

Proof. <: is trivial.
=: Write Oy for VR(R is a p.o. — |[Fr“¢”).

> We have Op <> OO¢p. Thus mpo, is equivalent to mp).
(Lemma 12)



A normal notion of normal Iarge cardinal Resurectionand Mavimalty (15/21)
» A kind of inverse of Theorem 10 also holds:

Theorem 13. Suppose that MP holds. If “x-large cardinal” is a notion
of large cardinal s.t. @ “k is an x-large cardinal” implies that x
is inaccessible; @ “k is an x-large cardinal” can not be destroyed
by forcing of size <x; 3 no new x-large cardinal is created by
set-forcing.

If there is an x-large cardinal, then there are cofinally many x-large
cardinals in V.

Proof. Suppose otherwise. Let x be a x-large cardinal, and
k1 > ko be a cardinal above which there are no x-large cardinals.

> Let P be a p.o. which collapses k1 to, say cardinality wi, and let G
be a (V,P)-generic filter. Then by @O and (@), there is no x-large
cardinal in V[G]. Also there is no x-large cardinal in any further
generic extention by 3.

> By MP it follows that there is no x-large cardinal in V but this is a
contradiction to the assumption of the theorem. [ (Theorem 13.)



A normal notion of normal Iarge cardinal (2/2) Resurection and Mavimalty (16/21)

» We shall say a notion of large cardinal (call this notion “x-large
cardinal”) normal if @ “k is an x-large cardinal” implies that & is
inaccessible.

@ “k is an x-large cardinal” cannot be destroyed by a forcing of size < &.

3 No new x-large cardinal can be created by small set-forcing.

@ ZFC + “there are unboundedly many x-large cardinals” is consistent.

» Most of the known notions of large cardinal are normal in the sense

above under the assumption of the consistency of the existence of a
sufficiently large cardinal.

Example 14. The notion of super almost-huge cardinal is normal
under the consistency of ZFC + “there is a huge cardinal” ( Theorem 3)

» A normal notion of large cardinal “x-large cardinal” is suspiciously
normal if “small” in 3 is dropped. The notion of “x-large cardinal’
in Theorem 13 is rather suspiciously normal.



Maximality Principle is independent over Laver-ge. large cardinal Reurectinad oialty (1721)

Theorem 10 reformulated. Suppose that “x-large cardinal” is a normal
notion of large cardinal. Then
ZFC + MP -+ “there are class many x-large cardinals” is consistent.

Theorem 11. (Hamkins, [Hamkins] )
MP is preserved by any set-generic extension. &

Theorem 13 reformulated. Assume that MP holds. If “x-large cardi-
nal” is a normal notion of of large cardinal and there is at least one
x-large cardinal, then there are cofinally many x-large cardinals in V. [

Theorem 15. Suppose that P is an iterable class of p.o.s, and “x-large
cardinal” is a normal notion of large cardinal s.t. its (tightly) Laver-
generic version is well-defined and can be forced starting from an
x-large cardinal k by a set forcing of small size, then MP is consistent
with ZFC + " there exists a (tightly) P-gen. Laver-gen. x-large cardinal”.
If, in addition, “there exist y-large cardinals above an x-large cardinal
but only boundedly many” is consistent for a suspiciously normal notion
of large cardinal "y-large cardinal”, then MP is independent over
ZFC + " there exists a (tightly) P-gen. Laver-gen. x-large cardinal”.

Proof. By Theorem 10, ZFC + MP + “there are class many x-large cardinals”
is consistent.



Maximality Principle is independent over Laver-ge. large cardinal (22 )Reurci ad Vainaly (18/21)
> Starting from a model of this theory, if we force the existence of (tightly)
‘P-Laver-gen. x-large cardinal by a set-forcing then MP survives in the

generic extension by Theorem 11.

> This shows the consistence of ZFC + MP +
“there is a (tightly) P-Laver gen. x-large cardinal”.

» For the second-half of the theorem, we start from a model with an x-large
cardinal kg and with at least one but only many y-cardinals above kq.

> Working in such a model V, Force the existence of (tightly) P-Laver gen.
x-large cardinal using k.

> Let V[G] be the generic extension. By the properties @ and ® of
normality there are y-large cardinals in V[G] but they are bounded.

> By Theorem 13, it follows that V[G] = =MP. (3 (Theorem 15)
Corollary 16. Suppose that P is an iterable class of p.o.s for which a forc-
ing construction of P-Laver gen. supercompact cardinal like the one in

Theorem 5, (1) or (3) in the main slides is available. Then MP is inde-
pendent over ZFC + “there is a P-Laver gen. supercompact cardinal”.

Proof. Use “inaccessible” as “y-large cardinal” in Theorem 15. [F (Corollary 16)
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