Resurrection and Maximality under a/the tightly Laver-generically ultrahuge cardinal — additional slides

> Sakaé Fuchino (渕野 昌) Kobe University, Japan https://fuchino.ddo.jp/index.html

(2023年6月12日 (02:03 JST) printer version) 2023年5月29日 (16:30~JST), 至 Kobe Set Theory Seminar 2023年6月5日 (16:30~JST)

The following slides are typeset using up $\mbox{\sc up}\mbox{\sc up}\mbox\sc up}\mbox\sc up\sc\sc up}\mbox{\sc up}\mbox\$

The most up-to-date version of these slides is going to be downloadable as https://fuchino.ddo.jp/slides/kobe2023-06-05a-pf.pdf

References

- S.F., A. Ottenbreit Maschio Rodrigues, and H. Sakai, Strong downward Löwenheim-Skolem theorems for stationary logics, Archive for Mathematical Logic, Vol.60, 1-2, (2021), 17–47. https://fuchino.ddo.jp/papers/SDLS-x.pdf
- [II] _____, Strong downward Löwenheim-Skolem theorems for stationary logics, II — reflection down to the continuum, Archive for Mathematical Logic, Vol.60, 3-4, (2021), 495–523. https://fuchino.ddo.jp/papers/SDLS-II-x.pdf
- [Minden] Kaethe Minden, Combining resurrection and maximality, The Journal of Symbolic Logic, Vol. 86, No. 1, (2021), 397–414.
- [Tsaprounis 1] Konstantinos Tsaprounis, On resurrection axioms, The Journal of Symbolic Logic, Vol.80, No.2, (2015), 587–608.
- [Tsaprounis 2] _____, Ultrahuge cardinals, Mathematical Logic Quarterly, Vol.62, No.1-2, (2016), 1–2.

Outline

- ▷ References
- \triangleright Outline

[The upper-half of the "Higher Infinite"] — chart given in the last talk

- Consistency strength of super almost-huge cardinal
 [The upper-half of the "Higher Infinite"] updated chart
- \triangleright Irreversibility of some implications
- Maximality Principle
- > Maximality Principle is preserved by set-forcing
- \triangleright A normal notion of normal large cardinal
- \triangleright Maximality Principle is independent over Laver-ge. large cardinal
- ▷ Further references

Consistency strength of super almost-huge cardinal

Resurrection and Maximality (5/21)

・ロト ・ 日 ・ モ ト ・ モ ・ うへつ

- ▶ [Theorem 3] is what I want to establish below.
- For cardinals κ ≤ λ and a sequence U
 = ⟨U_γ : κ ≤ γ < λ⟩ s.t. U_γ is a normal ultrafilter over P_κ(γ) for all κ ≤ γ < λ, we say that U
 is coherent if U_γ = U_δ|γ := {{a ∩ γ : a ∈ A} : A ∈ U_δ} for all κ ≤ γ ≤ δ < λ,.
- $\vdash \text{ For a coherent sequence of normal ultrafilters } \vec{\mathcal{U}} = \langle \mathcal{U}_{\gamma} : \kappa \leq \gamma < \lambda \rangle, \text{ We} \\ \text{let } j_{\gamma} : \mathsf{V} \xrightarrow{\prec}_{\kappa} M_{\gamma} \cong Ult(\mathsf{V}, U_{\gamma}) \text{ be the standard embedding, and, for } \kappa \leq \gamma \leq \delta \\ < \lambda, \text{ we define } k_{\gamma,\delta} : M_{\gamma} \xrightarrow{\prec} M_{\delta} \text{ by } k_{\gamma,\delta}([f]_{\mathcal{U}_{\gamma}}) := [\langle f(x \cap \gamma) : x \in \mathcal{P}_{\kappa}(\delta) \rangle]_{\mathcal{U}_{\delta}}.$
- \triangleright Then we have $j_{\delta} = k_{\gamma\delta} \circ j_{\gamma}$.
- **Theorem 1.** ([Higher-Inf], Theorem 24.11 reformulated) For a cardinal number κ and inaccessible $\lambda > \kappa$ the following are equivalent:
- (a) κ is a almost-huge cardinal with almost-huge elementary embedding j with the target $j(\kappa) = \lambda$.
- (b) There is a coherent sequence $\langle \mathcal{U}_{\gamma} : \kappa \leq \gamma < \lambda \rangle$ of normal ultrafilters s.t.
- (1) for all $\kappa \leq \gamma < \lambda$ and α with $\gamma \leq \alpha < j_{\gamma}(\kappa)$, there is $\gamma \leq \delta < \lambda$ s.t. $k_{\gamma,\delta}(\alpha) = \delta$.

Consistency strength of super almost-huge cardinal (2/3) Resurrection and Maximality (6/21)

Lemma 2. If κ is an (almost) huge cardinal and $2j : V \xrightarrow{\prec}_{\kappa} M$ is a(n almost) huge elementary embedding. Thus, in particular, $j^{(\kappa)>}M \subseteq M$. Then $(1) \quad j(\kappa)$ is inaccessible.

- (2) { $\alpha < \kappa : \alpha$ is measurable} is normal measure 1 subset of κ .
- (3) $M \models ``\{\alpha < j(\kappa) : \alpha \text{ is measurable}\}\$ is stationary in $j(\kappa)$ ''.
- $(4) \quad \{\alpha < j(\kappa) : \alpha \text{ is measurable}\} \text{ is cofinal in } j(\kappa).$

Proof. (1): Since κ is inaccessible. $M \models j(\kappa)$ is inaccessible" by elementarity ②. By ③, it follows that $j(\kappa)$ is really inaccessible. (2): κ is measurable and an ultrafilter witnessing this is an element of M by ③ and (1). Thus $M \models \kappa$ is measurable". $\mathcal{U} := \{A \subseteq \kappa : \kappa \in j(A)\}$ is a normal ultrafilter over κ and $\{\alpha < \kappa : \alpha \text{ is measurable}\} \in \mathcal{U}.$ (3): By (2), $\{\alpha < \kappa : \alpha \text{ is measurable}\} \in \mathcal{U}.$ (3): By (2), $\{\alpha < \kappa : \alpha \text{ is measurable}\}$ is a stationary subset of κ . By elementarity ③, it follows that $M \models \{\alpha < j(\kappa) : \alpha \text{ is measurable}\}$ is stationary $\subseteq j(\kappa)$ ". (4): follows from (3) and ③. \square (Lemma 2)

Consistency strength of super almost-huge cardinal (3/3) Resurrection and Maximality (7/21)

Theorem 3. Suppose that κ is huge. Then, $\{\alpha < \kappa : V_{\kappa} \models ``\alpha \text{ is super almost-huge}''\}$ is a normal measure 1 subset of κ .

Proof. Let $j: V \xrightarrow{\prec}_{\kappa} M$ be a huge elementary embedding, so that we have $(\bigoplus^{j(\kappa)} M \subseteq M)$.

- ▶ For $\kappa \leq \gamma < j(\kappa)$, let $\mathcal{U}_{\gamma} := \{A \subseteq \mathcal{P}_{\kappa}(\gamma) : j''\gamma \in j(A)\}.$
- ▷ Then $\vec{\mathcal{U}} := \langle \mathcal{U}_{\gamma} : \kappa \leq \gamma < j(\kappa) \rangle \in M$ by ④, and $\vec{\mathcal{U}} \models ①$ (see the proof of [Higher-Inf], Theorem 24.11).
- $\triangleright \ \, {\rm Since} \ \, \textcircled{1} \ \, {\rm is \ a \ \ closure \ \ property, \ \ } M \ \, {\rm knows \ that \ there \ are \ \ club \ many} \\ \alpha < j(\kappa) \ \, {\rm s.t.} \ \, \langle \mathcal{U}_{\gamma} \ : \ \kappa \leq \gamma < \alpha \rangle \models \textcircled{1} \ \, .$
- \triangleright By Lemma 2, (2), *M* thinks that there are stationarily many $\alpha < \kappa$ which are inaccessible (actually even measurable!). Thus
- ▶ $M \models$ "there are stat. many inaccessible $\alpha < j(\kappa)$ s.t. $\langle U_{\gamma} : \kappa \leq \gamma < \alpha \rangle \models ①$ "
- ▶ By Theorem 1, (5) $M \models V_{j(\kappa)} \models \kappa$ is super almost-huge".
- ▶ $\mathcal{U} := \{A \subseteq \kappa : \kappa \in j(A)\}$ is a normal ultrafilter over κ .
- ▶ By (5), $\{\alpha < \kappa : V_{\kappa} \models ``\alpha \text{ is super almost-huge}"\} \in \mathcal{U}$. (Theorem 3)

The upper-half of the "Higher Infinite" [Higher-Inf] Resurrection and Maximality (8/21)

Irreversibility of some implications

ি (Lemma 5) এ □ ▷ এট ▷ এই ▷ এ ৫ ৩ ৫ ৫

Proposition 4. Suppose that $\mathcal{P} = \text{all } \sigma\text{-closed p.o.s}$ or $\mathcal{P} = \text{all ccc p.o.s.}$ Then tightly $\mathcal{P}\text{-Laver gen.}$ supercompactness of κ does not neccessarily imply the $\mathcal{P}\text{-gen.}$ ultrahugeness of κ .

\triangleright For the proof of Proposition 4, we use the following:

- **Lemma 5.** Suppose that κ is \mathcal{P} -gen. ultrahuge for an arbitrary class \mathcal{P} of p.o.s. If there is an inaccessible $\lambda_0 > \kappa$ then there are cofinally many inaccessible in V.
- **Proof of Lemma 5:** Let $\lambda > \lambda_0$ be an arbitrary cardinal. Then there is $\mathbb{P} \in \mathcal{P}$ s.t., for (V, \mathbb{P}) -generic \mathbb{G} , there are $j, M \subseteq V[\mathbb{G}]$ s.t. (6) $j: V \xrightarrow{\prec}_{\kappa} M$, (7) $j(\kappa) > \lambda$, and (8) $(V_{j(\lambda)})^{V[\mathbb{G}]} \in M$.
- ▶ By ⑦ and elementarity \bigcirc , we have $j(\lambda_0) > \lambda$.
- ▶ By elementarity (6), $M \models "j(\lambda_0)$ is inaccessible".
- ▷ By (8), $V[\mathbb{G}] \models j(\lambda_0)$ is inaccessible", and hence $V \models j(\lambda_0)$ is inaccessible".

Irreversibility of some implications (2/2)

- **Proposition 4.** Suppose that $\mathcal{P} = \text{all } \sigma\text{-closed p.o.s}$ or $\mathcal{P} = \text{all ccc p.o.s.}$ Then tightly $\mathcal{P}\text{-Laver gen.}$ supercompactness of κ does not neccessarily imply the $\mathcal{P}\text{-gen.}$ ultrahugeness of κ .
- **Lemma 5.** Suppose that κ is \mathcal{P} -gen. ultrahuge for an arbitrary class \mathcal{P} of p.o.s. If there is an inaccessible $\lambda_0 > \kappa$ then there are cofinally many inaccessible in V.

Proof of Proposition 4: Suppose that κ is a supercompact cardinal and

- $\lambda_0 > \kappa$ is an inaccessible cardinal.
- ▶ We may assume that λ_0 is the largest inaccessible cardinal: If there is inaccessible cardinal larger than λ_0 , then let λ_1 be the least such inaccessible cardinal. Then, in V_{λ_1} , λ_0 is the largest inaccessible cardinal and κ is supercompact.
- $\triangleright V_{\lambda_1} \models "\kappa$ is supercompact" can be seen using the characterization of supercompactness in terms of ultrafilters.
- By Theorem 5 (in the main slides), (a), (c), there is a po P of size κ s.t., for (V, P)-generic G, we have V[G] ⊨ "κ is tightly P-Laver gen. supercompact".
- ▶ $V[\mathbb{G}] \models$ " λ_0 is the largest inaccessible caridnal".
- \triangleright By Lemma 5 above, it follows that V[G] \models " κ is not \mathcal{P} -gen. ultrahuge".

(Proposition 4)

Maximality Principle

• Maximality Principle (MP) in its non parameterized form is formulated in an infinite set of formulas asserting that all buttons are already pushed. I.e., for any $\mathcal{L}_{\varepsilon}$ -sentence φ , if, for a p.o. \mathbb{P} ,

(*)
$$\Vdash_{\mathbb{Q}} "\varphi"$$
 for all \mathbb{Q} with $\mathbb{P} \leq \mathbb{Q}$,
then φ holds.

- ▷ If (*) holds then we shall say that φ is a button with the push \mathbb{P} . **Proposition 6.** MP implies V ≠ L.
- For an L_ε-sentence φ let
 *mp*_φ :↔ ∃P(P is a p.o. ∧ ∀Q(P ≤ Q → ||-Q"φ")) → φ.

 Formally we define: MP := {mp_φ : φ is an L_ε-sentence}.

Maximality Principle (2/3)

Lemma 7. Suppose that φ is an $\mathcal{L}_{\varepsilon}$ -sentence. If ZFC is consistent, then so is ZFC + mp_{φ} .

Proof. Suppose otherwise. Then we have \bigcirc ZFC $\vdash \neg mp_{\varphi}$.

- Note that
- $\textcircled{10} \neg mp_{\varphi} \leftrightarrow \exists P(P \text{ is a p.o. } \land \forall Q(P \leq Q \rightarrow \parallel_{Q} "\varphi")) \land \neg \varphi.$
- \triangleright In ZFC, let \mathbb{P} be a p.o. as above. Then $\Vdash_{\mathbb{P}} " \varphi"$.
- $\triangleright \mbox{ On the other hand, since } \| \mathbb{P}^{"}\psi" \mbox{ for all } \psi \in \mathsf{ZFC} \mbox{ and by } \textcircled{9} \mbox{ , } \textcircled{0} \mbox{ , } we \mbox{ have } \| \mathbb{P}^{"}\neg\varphi" \mbox{ which is equivalent to } \neg \| \mathbb{P}^{"}\varphi".$
- Thus we obtained a proof of contradiction from ZFC. This is a contradiction to our assumption.

 (Lemma 7.)
- **Lemma 8.** For any $\mathcal{L}_{\varepsilon}$ -sentences $\varphi_0, ..., \varphi_{n-1}$, we have $\mathsf{ZFC} \vdash (mp_{\varphi_0} \land \cdots \land mp_{\varphi_{n-1}}) \leftrightarrow mp_{\varphi_0 \land \cdots \land \varphi_{n-1}}.$

Proof. If $\mathbb{P}_0, ..., \mathbb{P}_{n-1}$ are pushes of the buttons $\varphi_0, ..., \varphi_{n-1}$ resp., then $\mathbb{P}_0 \times \cdots \times \mathbb{P}_{n-1}$ is a push for $\varphi_0 \wedge \cdots \wedge \varphi_{n-1}$. \square (Lemma 8)

Maximality Principle (3/3)

- **Lemma 7.** Suppose that φ is an $\mathcal{L}_{\varepsilon}$ -sentence. If ZFC is consistent, then so is ZFC + mp_{φ} .
- **Lemma 8.** For any $\mathcal{L}_{\varepsilon}$ -sentences $\varphi_0, \dots, \varphi_{n-1}$, we have ZFC $\vdash (mp_{\varphi_0} \land \dots \land mp_{\varphi_{n-1}}) \leftrightarrow mp_{\varphi_0 \land \dots \land \varphi_{n-1}}$.
- **Theorem 9.** (Hamkins, [Hamkins]) If ZFC is consistent, then so is ZFC + MP.
- **Proof.** By Compactness Theorem, Lemma 7 and Lemma 8.

(Theorem 9)

▶ The same proof also shows the following:

Theorem 10. Suppose that "x-large cardinal" is a notion of large cardinal s.t. " κ is an x-large cardinal" is preserved by set-forcing of size $< \kappa$. If ZFC + "there are class many x-large cardinals" is consistent, then so is ZFC + MP + "there are class many x-large cardinals".

Maximality Principle is preserved by set-forcing

Theorem 11. (Hamkins, [Hamkins]) MP is preserved by any set-generic extension.

Proof. The theorem follows immediately from the following Lemma.

Lemma 12. MP is equivalent to $\{mp_{\varphi}^{+}: \varphi \text{ is a } \mathcal{L}_{\varepsilon}\text{-sentence}\}$ where $mp_{\varphi}^{+}: \leftrightarrow \exists P(P \text{ is a p.o. } \land \forall Q(P \leq Q \rightarrow || \varphi^{"}\varphi"))$ $\rightarrow \forall R(R \text{ is a p.o. } \rightarrow || R^{"}\varphi").$

Proof. \Leftarrow : is trivial. \Rightarrow : Write $\Box \varphi$ for $\forall R(R \text{ is a p.o. } \rightarrow \Vdash_R "\varphi")$. \triangleright We have $\Box \varphi \leftrightarrow \Box \Box \varphi$. Thus $mp_{\Box \varphi}$ is equivalent to mp_{φ}^+ . \Box (Lemma 12)

A normal notion of normal large cardinal

- ► A kind of inverse of Theorem 10 also holds:
- **Theorem 13.** Suppose that MP holds. If "x-large cardinal" is a notion of large cardinal s.t. ① " κ is an x-large cardinal" implies that κ is inaccessible; ② " κ is an x-large cardinal" can not be destroyed by forcing of size $<\kappa$; ③ no new x-large cardinal is created by set-forcing. If there is an x-large cardinal, then there are cofinally many x-large cardinals in V.
 - **Proof.** Suppose otherwise. Let κ_0 be a x-large cardinal, and $\kappa_1 > \kappa_0$ be a cardinal above which there are no x-large cardinals.
- Let P be a p.o. which collapses κ₁ to, say cardinality ω₁, and let G be a (V, P)-generic filter. Then by ① and ②, there is no x-large cardinal in V[G]. Also there is no x-large cardinal in any further generic extention by ③.

A normal notion of normal large cardinal (2/2)

- We shall say a notion of large cardinal (call this notion "x-large cardinal") normal if ① "κ is an x-large cardinal" implies that κ is inaccessible.
- 2 " κ is an x-large cardinal" cannot be destroyed by a forcing of size $<\kappa.$
- ③ No new x-large cardinal can be created by small set-forcing.
- 4 ZFC + "there are unboundedly many x-large cardinals" is consistent.
- Most of the known notions of large cardinal are normal in the sense above under the assumption of the consistency of the existence of a sufficiently large cardinal.
- **Example 14.** The notion of super almost-huge cardinal is normal under the consistency of ZFC + "there is a huge cardinal" (**Theorem 3**)
- ► A normal notion of large cardinal "x-large cardinal" is suspiciously normal if "small" in ③ is dropped. The notion of "x-large cardinal" in Theorem 13 is rather suspiciously normal.

Maximality Principle is independent over Laver-ge. large cardinal

Resurrection and Maximality (17/21)

Theorem 10 reformulated. Suppose that "x-large cardinal" is a normal notion of large cardinal. Then ZFC + MP + "there are class many x-large cardinals" is consistent.

Theorem 11. (Hamkins, [Hamkins]) MP is preserved by any set-generic extension.

Theorem 13 reformulated. Assume that MP holds. If "x-large cardinal" is a normal notion of of large cardinal and there is at least one x-large cardinal, then there are cofinally many x-large cardinals in V.

Theorem 15. Suppose that \mathcal{P} is an iterable class of p.o.s, and "x-large cardinal" is a normal notion of large cardinal s.t. its (tightly) Lavergeneric version is well-defined and can be forced starting from an x-large cardinal κ by a set forcing of small size, then MP is consistent with ZFC + " there exists a (tightly) \mathcal{P} -gen. Laver-gen. x-large cardinal". If, in addition, "there exist y-large cardinals above an x-large cardinal but only boundedly many" is consistent for a suspiciously normal notion of large cardinal "y-large cardinal", then MP is independent over ZFC + " there exists a (tightly) \mathcal{P} -gen. Laver-gen. x-large cardinal".

Proof. By Theorem 10, ZFC + MP + "there are class many x-large cardinals" is consistent.

Maximality Principle is independent over Laver-ge. large cardinal (2/2) Resurrection and Maximality (18/21)

- Starting from a model of this theory, if we force the existence of (tightly)
 P-Laver-gen. x-large cardinal by a set-forcing then MP survives in the generic extension by Theorem 11.
- ▷ This shows the consistence of ZFC + MP + "there is a (tightly) *P*-Laver gen. x-large cardinal".
- For the second-half of the theorem, we start from a model with an x-large cardinal κ₀ and with at least one but only many y-cardinals above κ₀.
- \triangleright Working in such a model V, Force the existence of (tightly) \mathcal{P} -Laver gen. x-large cardinal using κ_0 .
- \triangleright Let V[G] be the generic extension. By the properties 2 and 3 of normality there are y-large cardinals in V[G] but they are bounded.
- ▷ By Theorem 13, it follows that $V[\mathbb{G}] \models \neg MP$. (Theorem 15)

Corollary 16. Suppose that \mathcal{P} is an iterable class of p.o.s for which a forcing construction of \mathcal{P} -Laver gen. supercompact cardinal like the one in Theorem 5, (1) or (3) in the main slides is available. Then MP is independent over ZFC + "there is a \mathcal{P} -Laver gen. supercompact cardinal".

Proof. Use "inaccessible" as "y-large cardinal" in Theorem 15. 🗇 (Corollary 16)

Further references

- [Barbanel-DiPrisco-Tan] Julius B. Barbanel, Carlos A. Di Prisco, and It Ben Tan, Many-Times Huge and Superhuge Cardinals, The Journal of Symbolic Logic, Vol.49, No.1 (1984), 112–122.
- [S.Cox] Sean Cox, The digaonal reflection principle, Proceedings of the American Mathematical Society, Vol.140, No.8 (2012), 2893-2902.
- [S.F.-Juhász-et al.] S.F., István Juhász, Lajos Soukup, Zoltán Szentmiklóssy and Toshimichi Usuba, Fodor-type Reflection Principle and reflection of metrizability and meta-Lindelöfness, Topology and its Applications, Vol.157, 8 (June 2010), 1415–1429. https://fuchino.ddo.jp/papers/ssmL-erice-x.pdf
- [S.F.-Sakai] S.F., and Hiroshi Sakai, Generically supercompact cardinals by forcing with chain conditions, RIMS Kôkûroku, No.2213, (2022), 94–111. https://fuchino.ddo.jp/papers/RIMS2021-ccc-gen-supercompact-x.pdf
- [S.F.-Sakai 2] S.F., and Hiroshi Sakai, The first-order definability of generic large cardinals, to appear. https://fuchino.ddo.jp/papers/definability-of-glc-x.pdf

Further references (2/2)

Resurrection and Maximality (20/21)

- [Hamkins] Joel David Hamkins, A simple maximality principe, The Journal of Symbolic Logic Vol.68, no.7, (2003), 527–550.
- [Hamkins-Johnstone 1] Joel David Hamkins, and Thomas A. Johnstone, Resurrection axioms and uplifting cardinals, Archive for Mathematical Logic, Vol.53, Iss.3-4, (2014), 463–485.
- [Hamkins-Johnstone 2] Joel David Hamkins, and Thomas A. Johnstone, Strongly uplifting cardinals and the boldface resurrection axioms, Archive for Mathematical Logic volume 56, (2017), 1115–1133.
- [Higher-Inf] Akihiro Kanamori, The Higher Infinite, Springer-Verlag (1994/2003).
- [B.König] Bernhard König, Generic compactness reformulated, Archive for Mathematical Logic 43, (2004), 311–326.

Thank you for your attention! ご清聴ありがとうございました.

관심을 가져 주셔서 감사합니다 Σας ευχαριστώ για την προσοχή σας. Dziękuję za uwagę.

Ich danke Ihnen für Ihre Aufmerksamkeit.