Definability of Laver-generic large cardinals and largeness of generic large cardinals with chain conditions

A joint work with Hiroshi Sakai (酒井 拓史) Sakaé Fuchino (**渕野 昌**) Kobe University, Japan https://fuchino.ddo.jp/index.html

(2023年04月10日 (02:37 JST) printer version)

2022 年 10 月 7 日 (11:00 ~ EDT), 至 New York Set Theory Seminar

The following slides are typeset by up $\&T_EX$ with beamer class, and presented on UP2 Version 2.0.0 by Ayumu Inoue running on an ipad pro (10.5inch).

The most up-to-date version of these slides is going to be downloadable as https://fuchino.ddo.jp/slides/newyork2022-10-07-pf.pdf

> The research is supported by Kakenhi Grant-in-Aid for Scientific Research (C) 20K03717

References

- [0] S.F., Definability of Laver-generic large cardinals and largeness of generic large cardinals with chain conditions, Printer (and reader) version of the present slides. https://fuchino.ddo.jp/slides/newyork2022-10-07-pf.pdf
- S.F., A. Ottenbreit Maschio Rodrigues, and H. Sakai, Strong downward Löwenheim-Skolem theorems for stationary logics, II reflection down to the continuum, Archive for Mathematical Logic, Vol.60, 3-4, (2021), 495–523. https://fuchino.ddo.jp/papers/SDLS-II-x.pdf
- [Nagoya] S.F., A talk given at Nagoya University on 05/31/2019, https://fuchino.ddo.jp/talks/talk-nagoya-2019-05-31.pdf
- [CC] S.F., and H. Sakai, Generically supercompact cardinals by forcing with chain conditions RIMS Kôkûroku, No.2213 (2022). https://fuchino.ddo.jp/papers/RIMS2021-ccc-gen-supercompact-x.pdf
- [Def] S.F., and H. Sakai, The first-order definability of generic large cardinals, to appear. https://fuchino.ddo.jp/papers/definability-of-glc-x.pdf

・ロト ・ 戸 ・ ・ ヨ ト ・ ヨ ・ ・ つ へ ()

Outline

Def.-C.C. (3/20)

- ► Generic and Laver-generic large cardinals
- ▶ Some standard models of Laver-generic large cardinals
- ► The Trichotomy Theorem
- ► Tight Laver-genericity
- Definability of Laver-generic large cardinals
- ► Small generic large cardinals
- Largeness of (Laver-)generic large cardinals for p.o.s with chain conditions
- Historical background
- Resurrection Axioms (slides added after the talk)
- ▷ Proof of Theorem 2.
- \triangleright A sketch of the proof of Proposition 3.
- ▷ Proof of Lemma 7.

Generic and Laver-generic large cardinals

- For a class P of p.o.s, we call a cardinal κ generically supercompact by P (P-gen. supercompact, for short) if, for any λ ≥ κ, there are P ∈ P, (V, P)-generic G, and j, M ⊆ V[G] s.t. ① j : V →_κ M,
 ② j(κ) > λ, and ③ j"λ ∈ M.
- A cardinal κ is Laver-generically supercompact for P (or P-Laver-gen. supercompact, for short) if, for any λ ≥ κ, P ∈ P and (V, P)-generic G, there is a P-name Q with ||-P"Q ∈ P" s.t., for all (V, P * Q)-generic H ⊇ G, there are j, M ⊆ V[H] s.t.
 ① j: V →_κ M, ② j(κ) > λ, and ③ ' P * Q, H, j"λ ∈ M.
- ▷ Notation. We denote with $j : N \xrightarrow{\prec}_{\kappa} M$ the situation that N and M are transitive (sets or classes); j is an elementary embedding of the structure $\langle N, \in \rangle$ into the structure $\langle M, \in \rangle$; $\kappa \in N$, and $crit(j) = \kappa$.

Def.-C.C. (4/20)

Generic and Laver-generic large cardinals (2/3)

For a class *P* of p.o.s, we call a cardinal κ *P*-gen. supercompact *P*-gen. super-almost-huge *P*-gen. superhuge if, for any λ ≥ κ, there are P ∈ *P*, (V, P)-generic G, and j, M ⊆ V[G] s.t. ① j: V →_κ M, ② j(κ) > λ, and
③ j"λ ∈ M j"μ ∈ M for all μ < j(κ) j"j(κ) ∈ M.

Def.-C.C. (5/20)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

- A cardinal κ is *P*-Laver-gen. supercompact *P*-Laver-gen. supe-almost-huge *P*-Laver-gen. superhuge if, for any λ ≥ κ, ℙ ∈ *P* and (V, ℙ)-generic G, there is a *P*-name Q with ||-ℙ"Q ∈ *P*" s.t., for all (V, ℙ * Q)-generic H ⊇ G, there are j, M ⊆ V[H] s.t. ① j: V →_κ M, ② j(κ) > λ, and ③' ℙ * Q, H ∈ M and, j"λ ∈ M j"µ ∈ M for all µ < j(κ) j"j(κ) ∈ M.
- $\begin{array}{cccc} & \mathcal{P}\text{-Laver-gen. super-lawost-huge} & \Rightarrow & \mathcal{P}\text{-Laver-gen. super-compact-huge} & \Rightarrow & \mathcal{P}\text{-gen. super-lawost-huge} & \Rightarrow & \mathcal{P}\text{-gen. super-compact} \end{array}$

Generic and Laver-generic large cardinals (3/3) Notation:

For P = {ℙ : ℙ is σ-closed}, we say σ-closed-gen. supercompact, or σ-closed-Laver-gen. supercompact, etc. in place of P-gen. supercompact, or P-Laver-gen. supercompact, etc.

Def.-C.C. (6/20)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

- ▷ For $\mathcal{P} = \{\mathbb{P} : \mathbb{P} \text{ is } \mu\text{-cc}\}$, we say $\mu\text{-cc-Laver-gen. supercompact}$, etc. instead of $\mathcal{P}\text{-Laver-gen. supercompact}$, etc.
- ▷ Similarly, we say Cohen-Lever-gen. supercompact etc. instead of \mathcal{P} -Laver-gen. supercompact for $\mathcal{P} = {Fn(\lambda, 2) : \lambda \in On}$.
- ▶ For a p.o. P, we say P-gen. supercompact etc. instead of {P}-gen. supercompact etc.

Some standard models of Laver-generic large cardinals

- a) Suppose κ is supercompact and P = Col(ℵ₁, κ). Then, in V[G], for any (V, P)-generic G, ℵ₂^{V[G]} (= κ) is σ-closed-Laver-gen. supercompact and CH holds (similarly for super-almost-huge, or superhuge).
- b) Suppose κ is super-almost-huge with a Laver function f, and \mathbb{P} is the CS-iteration for forcing PFA along with f. Then, in V[G] for any (V, \mathbb{P}) -generic $\mathbb{G}, \aleph_2^{V[\mathbb{G}]} (= \kappa)$ is proper-Laver-generically super-almosthuge and $2^{\aleph_0} = \aleph_2$ holds (similarly for superhuge).
- c) Suppose κ is supercompact and $\mathbb{P} = \operatorname{Fn}(\kappa, 2)$. Then, in V[G] for any (V, \mathbb{P}) -generic G, $(2^{\aleph_0})^{V[\mathbb{G}]} (= \kappa)$ is Cohen-Laver-generically supercompact (similarly for super-almost-huge, or superhuge).
 - $\kappa = 2^{\aleph \mathbf{0}}$ is very large
- d) Suppose that κ is supercompact with a Laver function f, and \mathbb{P} is a FS-iteration for forcing MA along with f. Then, in V[G] for any (V, \mathbb{P}) -generic G, $2^{\aleph_0} (= \kappa)$ is ccc-Laver-generically supercompact (similarly for super-almost-huge, or superhuge). $\kappa = 2^{\aleph_0}$ is very large
- ► See [II] for more details.

The Trichotomy Theorem

- The examples in the previous slide can be considered as instances of the following more general situations.
- **Theorem 1.** (A) If κ is \mathcal{P} -Laver-gen. supercompact for a class \mathcal{P} of p.o.s such that ① all $\mathbb{P} \in \mathcal{P}$ are ω_1 preserving, ② all $\mathbb{P} \in \mathcal{P}$ do not add reals, and ③ there is a $\mathbb{P}_1 \in \mathcal{P}$ which collapses ω_2 , then $\kappa = \aleph_2$ and CH holds.
- (B) If κ is \mathcal{P} -Laver-gen. supercompact for a class \mathcal{P} of p.o.s such that (1) all $\mathbb{P} \in \mathcal{P}$ are ω_1 -preserving, (2)' there is a $\mathbb{P}_0 \in \mathcal{P}$ which add a real, and (3) there is a \mathbb{P}_1 which collapses ω_2 , then $\kappa = \aleph_2 = 2^{\aleph_0}$.
- (C) If κ is \mathcal{P} -Laver-gen. supercompact for a class \mathcal{P} of p.o.s such that ①' all $\mathbb{P} \in \mathcal{P}$ preserve cardinals, and ②' there is a $\mathbb{P}_0 \in \mathcal{P}$ which adds a real, then κ is "very large" and $\kappa \leq 2^{\aleph_0}$.

Proof. The proof is contained implicitly in [II]. For a more explicit presentation of a proof, see [Nagoya].

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Tight Laver-genericity

- (C) of Theorem 1 on the previous slide can be improved for a (slightly?) stronger variation of Laver-genericity:
- A cardinal κ is tightly P-Laver-gen. superhuge
 if, for any λ ≥ κ, ℙ ∈ P and (V, ℙ)-generic G, there is a P-name
 Q with ||-ℙ"Q ∈ P" s.t., for all (V, ℙ * Q)-generic ℍ ⊇ G, there
 are j, M ⊆ V[ℍ] s.t. ① j: V →_κ M,
 (2)' |ℙ * Q | ≤ j(κ), j(κ) > λ, and (3)' ℙ * Q, ℍ ∈ M, j″j(κ) ∈ M.
- ▷ All the examples a)~d) of Laver-genericity give actually tightly Laver-generic cardinals.
- **Theorem 2.** ([II]) Suppose that each element of \mathcal{P} is μ -cc for some $\mu < \kappa$. If κ is \mathcal{P} -Laver-gen. superhuge then $\kappa = 2^{\aleph_0}$.

Def.-C.C. (9/20)

Definability of Laver-generic large cardinals

- ► The statement "there is a *P*-Laver gen. supercompact (super-almost huge, or superhuge) cardinal" is expressible as a first-order statement in the framework of ZFC.
- \triangleright This follows from the Proposition 3 and Lemma 4, 5 below:
- The following Proposition 3 seems to be a folklore. It can be proved using a "generic" variant of the idea of extender:

Proposition 3. ([Def]) Suppose that \mathbb{P} is a p.o. (in V) and \mathbb{G} a (V, \mathbb{P}) -generic filter. Suppose further that θ is a regular cardinal and $j_0 : \mathcal{H}(\theta)^{V} \xrightarrow{\prec} N$ for a transitive set N with $j_0, N \in V[\mathbb{G}]$ is s.t. (1) $\mathbb{P} \in \mathcal{H}(\theta)^{V}$; and (2) for any $b \in N$, there is $a \in \mathcal{H}(\theta)^{V}$ s.t. $b \in j_0(a)$. Then there are $j, M \subseteq V[\mathbb{G}]$ s.t. (3) $j : V \xrightarrow{\prec} M$, (4) $N \subseteq M$, and (5) $j \upharpoonright \mathcal{H}(\theta)^{V} = j_0$.

Definability of Laver-generic large cardinals (2/3)

► The following Lemmata are easy to prove:

Lemma 4. ([Def]) Suppose that \mathbb{P} is a p.o. (in V), and \mathbb{G} a (V, \mathbb{P})generic set. Suppose that $j, M \subseteq V[\mathbb{G}]$ are s.t. $j : V \xrightarrow{\prec} M$ Then, for any cardinal θ (in V), we have: $V[\mathbb{G}] \models "j \upharpoonright \mathcal{H}(\theta)^{V} : \mathcal{H}(\theta)^{V} \xrightarrow{\prec} \mathcal{H}(j(\theta))^{M}$ ".

- ► The extra condition ② in Proposition 3 can be handled by the following:
- Lemma 5. ([Def]) Suppose that \mathbb{P} is a p.o. (in V), and \mathbb{G} a (V, \mathbb{P})generic set. Suppose further that θ is a regular cardinal in V and j_0 , $N \in V[\mathbb{G}]$ be such that N is transitive and $j_0 : \mathcal{H}(\theta) \xrightarrow{\prec} N$. Let $N_0 = \bigcup j_0 "\mathcal{H}(\theta)^V$. Then, we have: (1) N_0 is transitive. (2) (i) $N_0 \prec N$, (ii) $j_0 "\mathcal{H}(\theta) \subseteq N_0$, and (iii) $j_0 :$ $\mathcal{H}(\theta)^V \xrightarrow{\prec} N_0$. (3) For any $b \in N_0$ there is $a \in \mathcal{H}(\theta)^V$ s.t. $b \in j_0(a)$. (4) If $\theta_0 < \theta$ is s.t. $\mathcal{H}(\theta_0)^V \in \mathcal{H}(\theta)^V$, then $(\mathcal{H}(j_0(\theta_0)))^N \subseteq N_0$.

Def.-C.C. (11/20)

Definability of Laver-generic large cardinals (3/3)

- Def.-C.C. (12/20)
- Putting together Proposition 3, Lemma 4 and Lemma 5, we obtain the following:
- **Theorem 6.** ([Def]) For a class \mathcal{P} of p.o.s, the following are equivalent:
- (a) κ is \mathcal{P} -Laver-gen. supercompact;
- (b) For any $\lambda \geq \kappa$, and for any $\mathbb{P} \in \mathcal{P}$, there is a \mathbb{P} -name \mathbb{Q} with $\| \vdash_{\mathbb{P}} \mathbb{Q} \in \mathcal{P}$ s.t.
 - $\| \vdash_{\mathbb{P} \ast \mathbb{Q}} `` there are a regular cardinal \theta > \kappa, a transitive set N, and a mapping j_0 s.t.$
 - $(1) \quad j_0: \mathcal{H}(\theta)^{\vee} \xrightarrow{\triangleleft} N,$
 - (2) $\operatorname{crit}(j_0) = \kappa$, $\mathbb{P} * \mathbb{Q} \in \mathcal{H}(\theta)$, $j_0(\kappa) > \lambda$,
 - ③ for any $b \in N$, there is $a \in \mathcal{H}(\theta)^{\vee}$ s.t. $b \in j_0(a)$
 - $\textcircled{ 0 } \mathbb{P} * \mathbb{Q}, \ \underset{\sim}{\mathbb{H}} \in N, \ \text{and} \quad \textcircled{ 5 } \quad j_0 \, "\lambda \in N \ ".$

► A similar equivalence holds also for *P*-Laver gen. super-almost-huge and superhuge cardinals.

Small generic large cardinals

- For a class P of p.o.s, we say that a cardinal κ is P-gen. weakly compact, if, for any A ⊆ κ (A ∈ V), there is a transitive set model M of ZFC⁻ with κ, A ∈ M s.t., for some P ∈ P and (V, P)-generic G, we have j : M →_κ N for some j, N ∈ V[G]. ([CC])
- ▶ For a class \mathcal{P} of p.o.s, a cardinal κ is \mathcal{P} -gen. measurable, if there is $\mathbb{P} \in \mathcal{P}$ s.t., for a (V, \mathbb{P}) -generic \mathbb{G} , there are $j, M \subseteq V[\mathbb{G}]$ with $V[\mathbb{G}] \models "j : V \stackrel{\prec}{\to}_{\kappa} M$ ".
- \triangleright For any class \mathcal{P} of p.o.s, we have

 κ is \mathcal{P} -Laver-gen. supercompact $\Rightarrow \kappa$ is \mathcal{P} -gen. supercompact $\Rightarrow \kappa$ is \mathcal{P} -gen. measurable $\Rightarrow \kappa$ is \mathcal{P} -gen. weakly-compact. by definition.

 In the following we present results which show that for
 (†) P ⊆ {P : P satisfies μ-cc for some μ < κ} the implications above are very much "strict". Largeness of (Laver-)generic large cardinals for p.o.s with chain conditions Def-CC. (14/20) ► If

(†) $\mathcal{P} \subseteq \{\mathbb{P} : \mathbb{P} \text{ satisfies } \mu\text{-cc for some } \mu < \kappa\},\$

all $\mathcal P\text{-}\mathsf{gen.}$ weakly-compact cardinals are already fairly large:

Lemma 7. ([CC]) Suppose that \mathcal{P} satisfies (†) and κ is \mathcal{P} -gen. weakly-compact. Then (1) κ is weakly Mahlo. (2) κ has the tree property.

Proof.

Theorem 8. ([CC]) Suppose that \mathcal{P} satisfies (†) and κ is \mathcal{P} -gen. measurable. Then κ is a stationary limit of \mathcal{P} -gen. weakly-compact cardinals.

Theorem 9. ([CC]) Suppose that \mathcal{P} satisfies (†) and κ is \mathcal{P} -gen. supercompact. Then κ is a stationary limit of \mathcal{P} -gen. measurable cardinals.

Largeness of (Laver-)generic large cardinals for p.o.s with chain conditions Def. C.C. (15/20)

- ► The proof of Theorem 8 uses the following characterization of *P*-gen. measurable cardinals for *P* satisfying (†):
- **Theorem 10.** ([CC]) For a regular cardinals κ , ν with $\nu < \kappa$, the following are equivalent:
- (a) κ is ν -cc-gen. measurable.
- $\begin{array}{l} (\ b \) \quad \mbox{There is a non-trivial, non-principal and } \nu\mbox{-saturated} \\ < \kappa\mbox{-complete ideal over } \kappa. \end{array}$
- (c) there are ν -cc p.o. \mathbb{P} , (V, \mathbb{P}) -generic filter \mathbb{G} , and $j, M \subseteq \mathsf{V}[\mathbb{G}]$ s.t. $\mathsf{V}[\mathbb{G}] \models "j : \mathsf{V} \stackrel{\prec}{\to}_{\kappa} M$ " and $({}^{\kappa}M)^{\mathsf{V}[\mathbb{G}]} \subseteq M$.

・ロト ・ 日 ・ モ ト ・ モ ・ うへつ

Historical background

- There are several other authors who considered some variations of generic large cardinals as new axioms of set theory, notably Matt Foreman and Bernhard König. https://arxiv.org/abs/1403.2788
- ► Laver-genericity shows some reminiscence of Resurrection Axioms introduced and studied by [Hamkins and Johnstone], [Hamkins and Johnstone 2] (see also [Minden] and [Tsaprounis]). The similarity was already pointed out by Joel when I gave a talk (in person) in 2019 at the NY Set Theory Seminar.
- ▶ I first heard the idea of resurrection axioms in 2015 from Joel Hamkins when we had a long walk to and through Yamashita Park (山下公園) in Yokohama. In retrospective, this might have played subliminally an important role in me when I invented the primary version of Laver-genericity in 2018 and began to discuss it with Hiroshi and also with Andrés Ottenbreit Maschio Rodrigues, a PhD student of mine back then.

Def.-C.C. (16/20)

Historical background — September 12, 2015

► These Axioms are different in that Resurrection Axioms are absoluteness statements while the existence of a/the Laver-generic large cardinal is a Reflection Axiom. It seems to be still open what the connections between these two types of axioms can be ([added after the talk] we know now more about what these connections are: see the following additional slides).

Resurrection Axioms (slides added after the talk)

- For a class P of p.o.s and a definable cardinal µ (e.g. defined to be ℵ₁, ℵ₂, 2^{ℵ₀}, (2^{ℵ₀})⁺. etc.) the Resurrection Axiom for P and H(µ) is defined by:
- $\begin{aligned} \mathsf{RA}_{\mathcal{H}(\mu)}^{\mathcal{P}} &: \text{ For any } \mathbb{P} \in \mathcal{P}, \text{ there is a } \mathbb{P}\text{-name } \mathbb{Q} \text{ of p.o. s.t.} \\ & \| \mathbb{P}^{"} \mathbb{Q} \in \mathcal{P}^{"} \text{ and, for any } (\mathsf{V}, \mathbb{P} * \mathbb{Q})\text{-generic } \mathbb{H}, \text{ we have} \\ & \mathcal{H}(\mu)^{\widetilde{\mathsf{V}}} \prec \mathcal{H}(\mu)^{\mathsf{V}[\mathbb{H}]}. \end{aligned}$
- \triangleright Here, μ s in the left and right side of the last formula are actually meant μ^{V} and $\mu^{V[\mathbb{H}]}$ respectively.
- **Theorem 11.** (1) For a class of p.o.s \mathcal{P} satisfying the conditions in (A) of Theorem 1, if κ ($\aleph_2 = (2^{\aleph_0})^+$ see Theorem 1) is tightly \mathcal{P} -Laver-gen. superhuge, then $\mathsf{RA}^{\mathcal{P}}_{\mathcal{H}((2^{\aleph_0})^+)}$ holds.
- (2) For a class of p.o.s \mathcal{P} satisfying the conditions in one of (B) or (C) of Theorem 1, if κ (= 2^{N0} see Theorem 1 and 2) is tightly \mathcal{P} -Laver-gen. superhuge, then $\mathsf{RA}_{\mathcal{H}(2^{N_0})}^{\mathcal{P}}$ holds.

Resurrection Axioms (slides added after the talk 2/2)

Proof. (The following proof is based on the idea suggested by Gunter Fuchs during the talk).

Def.-C.C. (19/20)

- \blacktriangleright (1) and (2) are proved similarly. We give here a proof of (1).
- ► Suppose $\mathbb{P} \in \mathcal{P}$. Then, by tightly \mathcal{P} -Laver gen. superhugeness of κ (= $(2^{\aleph_0})^+$), there is a \mathbb{P} -name \mathbb{Q} of p.o. with $\|-\mathbb{P}^{"}\mathbb{Q} \in \mathcal{P}^{"}$ s.t.,

for $(V, \mathbb{P} * \mathbb{Q})$ -generic \mathbb{H} , there are $j, M \subseteq V[\mathbb{H}]$ with $(1) j : V \xrightarrow{\prec}_{\kappa} M$, $(2) j(\kappa) = |\widetilde{\mathbb{P}} * \mathbb{Q}|, (3) \mathbb{P}, \mathbb{H} \in M \text{ and } (4) j''j(\kappa) \in M.$

Claim. $\mathcal{H}(j(\kappa))^{\vee[\mathbb{H}]} \subseteq M$ and hence $\mathcal{H}(j(\kappa))^M = \mathcal{H}(j(\kappa))^{\vee[\mathbb{H}]}$.

- $\vdash \text{ Suppose that } b \in \mathcal{H}(j(\kappa))^{V[\mathbb{H}]} \text{ and let } c \subseteq j(\kappa) \text{ be a code of } b. \\ \text{Let } \underbrace{c}_{\kappa} \text{ be a nice } \mathbb{P} * \mathbb{Q}\text{-name of } c. \text{ By } (2), |\underline{c}| \leq j(\kappa). \text{ By } (4) \text{ it follows} \\ \text{that } \underbrace{c}_{\kappa} \in M. \text{ Thus } c \in M \text{ by } (3) \text{ , and hence } b \in M. \\ \dashv$
- Since crit(j) = κ, j(a) = a for all a ∈ (H(κ))^V. Thus id_{H(κ)} = j ↾ H(κ)^V : H(κ)^V ≺→ H(j(κ))^{V[ℍ]}.
 Since κ = ((2^{ℵ₀})⁺)^V and j(κ) = ((2^{ℵ₀})⁺)^{V[ℍ]}, it follows that

 $\mathcal{H}((2^{\aleph_0})^+)^{\mathsf{V}} \prec \mathcal{H}((2^{\aleph_0})^+)^{\mathsf{V}[\mathbb{H}]}.$

Thank you for your attention! ご清聴ありがとうございました.

관심을 가져 주셔서 감사합니다 Gracias por su atención. Dziękuję za uwagę. Grazie per l'attenzione. Dank u voor uw aandacht. Ich danke Ihnen für Ihre Aufmerksamkeit.

Sac

Proof of Lemma 7.

- Lemma 7.([CC]) Suppose that \mathcal{P} satisfies (†) and κ is \mathcal{P} -gen. weaklycompact. Then (1) κ is weakly Mahlo. (2) κ has the tree property. **Proof.** We prove (1): Suppose that $C \subseteq \kappa$ is a club. Let $A \subseteq \kappa$ be s.t. it codes C as well as witnesses of singularity of all singular cardinals and being successor of successor cardinals $< \kappa$.
- ▶ Let *M* be a transitive model of ZFC⁻ s.t. κ , $A \in M$ and there is a ν -cc p.o. \mathbb{P} with (V, \mathbb{P}) -generic \mathbb{G} s.t. there are *j*, $N \in V[\mathbb{G}]$ with $j : M \stackrel{\prec}{\to}_{\kappa} N$.
- ▶ Note $C \in M$ by $A \in M$. We have $N \models j(C)$ is a club subset of $j(\kappa)$ " by elementarity. Since $j(C) \cap \kappa = C$ by $crit(j) = \kappa$, it follows that $\kappa \in j(C)$. κ is regular. Since \mathbb{P} preserves cardinality and cofinality $\geq \nu$ by its ν -cc, $V[\mathbb{G}] \models \kappa$ is regular". It follows that $N \models \kappa$ is regular". Thus $N \models j(C)$ contains a regular cardinal" and $M \models C$ contains a regular cardinal" by elementarity. This implies that κ is a weakly Mahlo cardinal.

A sketch of the proof of Proposition 3.

- ► We imitate the ultraproduct construction:
- $\,\vartriangleright\,$ Let $\mathbb G$ be a (V, $\mathbb P)\text{-generic}$ filter. We work in V[$\mathbb G$]. Let
 - $\mathcal{F} := \{ f \in \mathsf{V} : f : \operatorname{dom}(f) \to \mathsf{V}, \operatorname{dom}(f) \in \mathcal{H}(\theta)^{\mathsf{V}} \}$, and
 - $\Pi := \{ \langle f, a \rangle : f \in \mathcal{F}, a \in j_0(\operatorname{dom}(f)) \}.$

For $\langle f, a \rangle$, $\langle g, b \rangle \in \Pi$, let

• $\langle f, a \rangle \sim \langle g, b \rangle : \Leftrightarrow \langle a, b \rangle \in j_0(S_{f(x)=g(y)})$, where $S_{f(x)=g(y)} := \{ \langle u, v \rangle : u \in \text{dom}(f), v \in \text{dom}(g), f(u) = g(v) \};$

and

•
$$\langle f, a \rangle \in \langle g, b \rangle :\Leftrightarrow \langle a, b \rangle \in j_0(S_{f(x) \in g(y)})$$
, where
 $S_{f(x) \in g(y)} := \{ \langle u, v \rangle : u \in \operatorname{dom}(f), v \in \operatorname{dom}(g), f(u) \in g(v) \}.$

Proof of Theorem 2.

- **Theorem 2.** ([II]) Suppose that each element of \mathcal{P} is μ -cc for some $\mu < \kappa$. If κ is \mathcal{P} -Laver-gen. superhuge then $\kappa = 2^{\aleph_0}$.
- **Proof.** Let \mathbb{P} and κ be as above.
- ▶ $2^{\aleph_0} \ge \kappa$ follows from the following Lemma:
- **Lemma A1.** (Lemma 5.5 in [II]) Suppose that \mathcal{P} is a class of p.o.s containing a p.o. \mathbb{P} which adds a real. If κ is a \mathcal{P} -Laver-gen. supercompact, then $2^{\aleph_0} \geq \kappa$.
- **Proof of Lemma A1.:** Let $\mathbb{P} \in \mathcal{P}$ be s.t. any generic filter over P codes a new real.
- Suppose that $\mu < \kappa$ We have to show hat $2^{\aleph_0} > \mu$.
- \triangleright Let $\vec{a} = \langle a_{\xi} : \xi < \mu \rangle$ be a sequence of subsets of ω .
- It is enough to show that \vec{a} does not enumerate $\mathcal{P}(\omega)$.

Proof of Theorem 2. (2/3)

- Since μ < κ, we have j(ā) = ā. Since ℍ ∩ ℙ ∈ M codes a real not in V, we have</p>
- \triangleright V \models " \vec{a} does not enumerate $\mathcal{P}(\omega)$ ".

Proof of Theorem 2. (3/3)

Theorem 2. ([II]) Suppose that each element of \mathcal{P} is μ -cc for some $\mu < \kappa$. If κ is \mathcal{P} -Laver-gen. superhuge then $\kappa = 2^{\aleph_0}$.

Continuation of the Proof of Theorem 2.: We prove $2^{\aleph_0} \leq \kappa$.

- ▶ Let $\lambda \geq \kappa$, 2^{\aleph_0} be sufficiently large and let $\mathbb{P} \in \mathcal{P}$, \mathbb{Q} a \mathbb{P} -name with $\| \vdash_{\mathbb{P}}^{``} \mathbb{Q} \in \mathcal{P}^{''}$, and \mathbb{H} a $(\mathsf{V}, \mathbb{P} * \mathbb{Q})$ -generic set with $j, M \in \mathsf{V}[\mathbb{H}]$ s.t. $j : \mathsf{V} \xrightarrow{\sim}_{\kappa} M$, $(*) | \mathbb{P} * \mathbb{Q} | \leq j(\kappa) > \lambda$, \mathbb{H} , $\mathbb{P} \in M$, and $(**) j''j(\kappa) \in M$.
- Since κ is regular (this follows already from P-gen. largeness of κ), M ⊨"j(κ) is regular" by elementarity. By (**) it follows that j(κ) is regular in V[ℍ]. Hence it is also regular in V.
- ▶ By assumption $\mathbb{P} * \mathbb{Q}$ has μ -cc for some $\mu < \kappa$.
- Since the chain condition of P and P-gen. supercompactness of κ implies SCH above 2^{<κ} ([II]), we have V ⊨"(j(κ))^{<μ} = j(κ)". By (*) it follows that V[G ⊨"2[№]0 ≤ j(κ)". By (**) we have (j(κ)⁺)^M = (j(κ)⁺)^{V[II]}. Thus M ⊨ 2[№]0 ≤ j(κ). By elementarity, it follows that V ⊨ 2[№]0 ≤ κ.

・ロト ・ 日 ・ モ ト ・ モ ・ うへつ