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Outline Def.-C.C. (3/20)

▶ Generic and Laver-generic large cardinals
▶ Some standard models of Laver-generic large cardinals
▶ The Trichotomy Theorem
▶ Tight Laver-genericity
▶ Definability of Laver-generic large cardinals
▶ Small generic large cardinals
▶ Largeness of (Laver-)generic large cardinals for p.o.s with chain

conditions
▶ Historical background
▶ Resurrection Axioms (slides added after the talk)

▷ Proof of Theorem 2.
▷ A sketch of the proof of Proposition 3.
▷ Proof of Lemma 7.
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Generic and Laver-generic large cardinals Def.-C.C. (4/20)

▶ For a class P of p.o.s, we call a cardinal κ generically supercompact
by P (P-gen. supercompact, for short) if, for any λ ≥ κ, there are
P ∈ P , (V,P)-generic G, and j , M ⊆ V[G] s.t. ① j : V ≺→κ M,
② j(κ) > λ, and ③ j ′′λ ∈ M.

▶ A cardinal κ is Laver-generically supercompact for P (or P-Laver-
gen. supercompact, for short) if, for any λ ≥ κ, P ∈ P and
(V,P)-generic G, there is a P-name Q

∼
with ‖–P “ Q

∼
∈ P ” s.t., for

all (V,P ∗Q
∼
)-generic H ⊇ G, there are j , M ⊆ V[H] s.t.

① j : V ≺→κ M, ② j(κ) > λ, and ③ ’ P ∗Q
∼

, H, j ′′λ ∈ M.

▷ Notation. We denote with j : N
≺→κ M the situation that N and

M are transitive (sets or classes); j is an elementary embedding of
the structure 〈N,∈〉 into the structure 〈M,∈〉; κ ∈ N, and
crit(j) = κ.
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Generic and Laver-generic large cardinals (2/3) Def.-C.C. (5/20)

▶ For a class P of p.o.s, we call a cardinal κ P-gen. supercompact
P-gen. super-almost-huge P-gen. superhuge
if, for any λ ≥ κ, there are P ∈ P , (V,P)-generic G, and j ,
M ⊆ V[G] s.t. ① j : V ≺→κ M, ② j(κ) > λ, and
③ j ′′λ ∈ M j ′′µ ∈ M for all µ < j(κ) j ′′j(κ) ∈ M.

▶ A cardinal κ is P-Laver-gen. supercompact
P-Laver-gen. supe-almost-huge P-Laver-gen. superhuge if, for any
λ ≥ κ, P ∈ P and (V,P)-generic G, there is a P-name Q

∼
with

‖–P “ Q
∼

∈ P ” s.t., for all (V,P ∗ Q
∼
)-generic H ⊇ G, there are j ,

M ⊆ V[H] s.t. ① j : V ≺→κ M, ② j(κ) > λ, and ③’ P ∗Q
∼

, H ∈ M

and, j ′′λ ∈ M j ′′µ ∈ M for all µ < j(κ) j ′′j(κ) ∈ M.

▷ P-Laver-gen. superhuge ⇒ P-Laver-gen. super-almost-huge ⇒ P-Laver-gen. supercompact
⇓ ⇓ ⇓

P-gen. superhuge ⇒ P-gen. super-almost-huge ⇒ P-gen. supercompact
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Generic and Laver-generic large cardinals (3/3) Def.-C.C. (6/20)

Notation:

▶ For P = {P : P is σ-closed}, we say σ-closed-gen. supercompact,
or σ-closed-Laver-gen. supercompact, etc. in place of P-gen.
supercompact, or P-Laver-gen. supercompact, etc.

▷ For P = {P : P is µ-cc}, we say µ-cc-Laver-gen. supercompact,
etc. instead of P-Laver-gen. supercompact, etc.

▷ Similarly, we say Cohen-Lever-gen. supercompact etc. instead of
P-Laver-gen. supercompact for P = {Fn(λ, 2) : λ ∈ On}.

▶ For a p.o. P, we say P-gen. supercompact etc. instead of {P}-gen.
supercompact etc.
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Some standard models of Laver-generic large cardinals Def.-C.C. (7/20)

a) Suppose κ is supercompact and P = Col(ℵ1, κ). Then, in V[G],
for any (V,P)-generic G, ℵV[G]

2 (= κ) is σ-closed-Laver-gen. super-
compact and CH holds (similarly for super-almost-huge, or superhuge).

b) Suppose κ is super-almost-huge with a Laver function f , and P
is the CS-iteration for forcing PFA along with f . Then, in V[G]

for any (V,P)-generic G, ℵV[G]
2 (= κ) is proper-Laver-generically

super-almosthuge and 2ℵ0 = ℵ2 holds (similarly for superhuge).

c) Suppose κ is supercompact and P = Fn(κ, 2). Then, in V[G] for
any (V,P)-generic G, (2ℵ0)V[G] (= κ) is Cohen-Laver-generically
supercompact (similarly for super-almost-huge, or superhuge). κ = 2ℵ0 is

very large

d) Suppose that κ is supercompact with a Laver function f , and P is
a FS-iteration for forcing MA along with f . Then, in V[G] for any
(V,P)-generic G, 2ℵ0 (= κ) is ccc-Laver-generically supercompact
(similarly for super-almost-huge, or superhuge). κ = 2ℵ0 is very large

▶ See [II] for more details. tightness
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The Trichotomy Theorem Def.-C.C. (8/20)

▶ The examples in the previous slide can be considered as instances of
the following more general situations.

Theorem 1. (A) If κ is P-Laver-gen. supercompact for a class P of
p.o.s such that ① all P ∈ P are ω1 preserving, ② all P ∈ P do
not add reals, and ③ there is a P1 ∈ P which collapses ω2, then
κ = ℵ2 and CH holds.

(B) If κ is P-Laver-gen. supercompact for a class P of p.o.s such that
① all P ∈ P are ω1-preserving, ②’ there is a P0 ∈ P which add a
real, and ③ there is a P1 which collapses ω2, then κ = ℵ2 = 2ℵ0 .

(C) If κ is P-Laver-gen. supercompact for a class P of p.o.s such that
①’ all P ∈ P preserve cardinals, and ②’ there is a P0 ∈ P which
adds a real, then κ is “very large” and κ ≤ 2ℵ0 .

Proof. The proof is contained implicitly in [II] . For a more explicit
presentation of a proof, see [Nagoya] . □□
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Tight Laver-genericity Def.-C.C. (9/20)

▶ (C) of Theorem 1 on the previous slide can be improved for a
(slightly?) stronger variation of Laver-genericity:

▶ A cardinal κ is
::::::
tightly P-Laver-gen. superhuge

if, for any λ ≥ κ, P ∈ P and (V,P)-generic G, there is a P-name
Q
∼

with ‖–P “ Q
∼

∈ P ” s.t., for all (V,P ∗Q
∼
)-generic H ⊇ G, there

are j , M ⊆ V[H] s.t. ① j : V ≺→κ M,
②’

::::::::::::::

|P ∗Q
∼
| ≤ j(κ), j(κ) > λ, and ③’ P ∗Q

∼
, H ∈ M, j ′′j(κ) ∈ M.

▷ All the examples a)～d) of Laver-genericity give actually
::::::
tightly

Laver-generic cardinals.

Theorem 2. ( [II] ) Suppose that each element of P is µ-cc for some
µ < κ. If κ is P-Laver-gen. superhuge then κ = 2ℵ0 .

Proof.
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Definability of Laver-generic large cardinals Def.-C.C. (10/20)

▶ The statement “there is a P-Laver gen. supercompact (super-almost
huge, or superhuge) cardinal” is expressible as a first-order
statement in the framework of ZFC.

▷ This follows from the Proposition 3 and Lemma 4, 5 below:
▶ The following Proposition 3 seems to be a folklore. It can be proved

using a “generic” variant of the idea of extender:

Proposition 3. ([ Def ]) Suppose that P is a p.o. (in V) and G a
(V,P)-generic filter. Suppose further that θ is a regular cardinal
and j0 : H(θ)V

≺→ N for a transitive set N with j0, N ∈ V[G] is
s.t. ① P ∈ H(θ)V; and
② for any b ∈ N, there is a ∈ H(θ)V s.t. b ∈ j0(a).

Then there are j ,M ⊆ V[G] s.t. ③ j : V ≼→ M, ④ N ⊆ M, and
⑤ j ↾ H(θ)V = j0.

A sketch of the Proof
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Definability of Laver-generic large cardinals (2/3) Def.-C.C. (11/20)

▶ The following Lemmata are easy to prove:
Lemma 4. ([ Def ]) Suppose that P is a p.o. (in V), and G a (V,P)-

generic set. Suppose that j ,M ⊆ V[G] are s.t. j : V ≺→ M
Then, for any cardinal θ (in V), we have:

V[G] |= “ j ↾ H(θ)V : H(θ)V
≺→ H(j(θ))M ”. □□

▶ The extra condition ② in Proposition 3 can be handled by the
following:

Lemma 5. ([ Def ]) Suppose that P is a p.o. (in V), and G a (V,P)-
generic set. Suppose further that θ is a regular cardinal in V and
j0, N ∈ V[G] be such that N is transitive and j0 : H(θ)

≺→ N.
Let N0 =

∪
j0

′′H(θ)V. Then, we have:
① N0 is transitive. ② (i) N0 ≺ N, (ii) j0 ′′H(θ) ⊆ N0, and (iii) j0 :

H(θ)V
≺→ N0. ③ For any b ∈ N0 there is a ∈ H(θ)V s.t. b ∈ j0(a).

④ If θ0 < θ is s.t. H(θ0)
V ∈ H(θ)V, then (H(j0(θ0)))

N ⊆ N0. □□
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Definability of Laver-generic large cardinals (3/3) Def.-C.C. (12/20)

▶ Putting together Proposition 3, Lemma 4 and Lemma 5, we obtain
the following:

Theorem 6. ([ Def ]) For a class P of p.o.s, the following are equivalent:
( a ) κ is P-Laver-gen. supercompact;
( b ) For any λ ≥ κ, and for any P ∈ P , there is a P-name Q

∼
with

‖–P “ Q
∼

∈ P ” s.t.
‖–P∗Q

∼
“ there are a regular cardinal θ > κ, a transitive set N,
and a mapping j0 s.t.

① j0 : H(θ)V
≼→ N,

② crit(j0) = κ, P ∗Q
∼

∈ H(θ), j0(κ) > λ,
③ for any b ε N, there is a ε H(θ)V s.t. b ε j0(a)

④ P ∗Q
∼

, H∼ ∈ N, and ⑤ j0
′′λ ∈ N ” .

▶ A similar equivalence holds also for P-Laver gen. super-almost-huge
and superhuge cardinals.
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Small generic large cardinals Def.-C.C. (13/20)

▶ For a class P of p.o.s, we say that a cardinal κ is P-gen. weakly
compact, if, for any A ⊆ κ (A ∈ V), there is a transitive set model
M of ZFC− with κ,A ∈ M s.t., for some P ∈ P and (V,P)-generic
G, we have j : M

≺→κ N for some j , N ∈ V [G]. ([ CC ])

▶ For a class P of p.o.s, a cardinal κ is P-gen. measurable, if there
is P ∈ P s.t., for a (V,P)-generic G, there are j ,M ⊆ V[G] with
V[G] |= “ j : V ≺→κ M” .

▷ For any class P of p.o.s, we have
κ is P-Laver-gen. supercompact ⇒ κ is P-gen. supercompact
⇒ κ is P-gen. measurable ⇒ κ is P-gen. weakly-compact.

by definition.
▶ In the following we present results which show that for
(†) P ⊆ {P : P satisfies µ-cc for some µ < κ}

the implications above are very much “strict”.
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Largeness of (Laver-)generic large cardinals for p.o.s with chain conditions Def.-C.C. (14/20)

▶ If
(†) P ⊆ {P : P satisfies µ-cc for some µ < κ},

all P-gen. weakly-compact cardinals are already fairly large:

Lemma 7. ([ CC ]) Suppose that P satisfies (†) and κ is P-gen.
weakly-compact. Then (1) κ is weakly Mahlo. (2) κ has the tree
property.

Proof.

Theorem 8. ([ CC ]) Suppose that P satisfies (†) and κ is P-gen.
measurable. Then κ is a stationary limit of P-gen. weakly-compact
cardinals. □□

Theorem 9. ([ CC ]) Suppose that P satisfies (†) and κ is P-gen.
supercompact. Then κ is a stationary limit of P-gen. measurable
cardinals. □□
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Largeness of (Laver-)generic large cardinals for p.o.s with chain conditionsDef.-C.C. (15/20)

▶ The proof of Theorem 8 uses the following characterization of
P-gen. measurable cardinals for P satisfying (†):

Theorem 10. ([ CC ]) For a regular cardinals κ, ν with ν < κ, the
following are equivalent:

( a ) κ is ν-cc-gen. measurable.
( b ) There is a non-trivial, non-principal and ν-saturated

<κ-complete ideal over κ.
( c ) there are ν-cc p.o. P, (V,P)-generic filter G, and

j , M ⊆ V[G] s.t. V[G] |= “ j : V ≺→κ M” and (κM)V[G] ⊆ M. □□
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Historical background Def.-C.C. (16/20)

▶ There are several other authors who considered some variations of
generic large cardinals as new axioms of set theory, notably Matt
Foreman and Bernhard König. https://arxiv.org/abs/1403.2788

▶ Laver-genericity shows some reminiscence of Resurrection Axioms
introduced and studied by [Hamkins and Johnstone], [Hamkins and
Johnstone 2] (see also [Minden] and [Tsaprounis]). The similarity
was already pointed out by Joel when I gave a talk (in person) in
2019 at the NY Set Theory Seminar.

▶ I first heard the idea of resurrection axioms in 2015 from Joel
Hamkins when we had a long walk to and through Yamashita Park
(山下公園) in Yokohama. In retrospective, this might have played
subliminally an important role in me when I invented the primary
version of Laver-genericity in 2018 and began to discuss it with
Hiroshi and also with Andrés Ottenbreit Maschio Rodrigues, a PhD
student of mine back then.

https://link.springer.com/article/10.1007/s00153-014-0374-y
https://link.springer.com/article/10.1007/s00153-017-0542-y
https://link.springer.com/article/10.1007/s00153-017-0542-y
https://www.cambridge.org/core/journals/journal-of-symbolic-logic/article/combining-resurrection-and-maximality/8BC63F6732C596A4E7A837D829EB565A
https://www.jstor.org/stable/43864237
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Historical background — September 12, 2015 Def.-C.C. (17/20)

▶ These Axioms are different in that Resurrection Axioms are
absoluteness statements while the existence of a/the Laver-generic
large cardinal is a Reflection Axiom. It seems to be still open what
the connections between these two types of axioms can be ([added
after the talk] we know now more about what these connections
are: see the following additional slides).
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Resurrection Axioms (slides added after the talk) Def.-C.C. (18/20)

▶ For a class P of p.o.s and a definable cardinal µ (e.g. defined to be
ℵ1, ℵ2, 2ℵ0 , (2ℵ0)+. etc.) the Resurrection Axiom for P and H(µ)
is defined by:

RAP
H(µ) : For any P ∈ P , there is a P-name Q

∼
of p.o. s.t.

‖–P “ Q
∼

∈ P ” and, for any (V,P ∗Q
∼
)-generic H, we have

H(µ)V ≺ H(µ)V[H].
▷ Here, µs in the left and right side of the last formula are actually

meant µV and µV[H] respectively.

Theorem 11. ( 1 ) For a class of p.o.s P satisfying the conditions
in (A) of Theorem 1, if κ ( ℵ2 = (2ℵ0)+ see Theorem 1) is tightly
P-Laver-gen. superhuge, then RAP

H((2ℵ0 )+)
holds.

( 2 ) For a class of p.o.s P satisfying the conditions in one of (B)
or (C) of Theorem 1, if κ ( = 2ℵ0 see Theorem 1 and 2) is tightly
P-Laver-gen. superhuge, then RAP

H(2ℵ0 )
holds.
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Resurrection Axioms (slides added after the talk 2/2) Def.-C.C. (19/20)

Proof. (The following proof is based on the idea suggested by Gunter
Fuchs during the talk).

▶ (1) and (2) are proved similarly. We give here a proof of (1).
▶ Suppose P ∈ P . Then, by tightly P-Laver gen. superhugeness of κ

( = (2ℵ0)+), there is a P-name Q
∼

of p.o. with ‖–P “ Q
∼

∈ P ” s.t.,

for (V,P ∗Q
∼
)-generic H, there are j , M ⊆ V[H] with ① j : V

≺→κ M,
② j(κ) = |P ∗Q

∼
|, ③ P, H ∈ M and ④ j ′′j(κ) ∈ M.

Claim. H(j(κ))V[H] ⊆ M and hence H(j(κ))M = H(j(κ))V[H] .

` Suppose that b ∈ H(j(κ))V[H] and let c ⊆ j(κ) be a code of b.
Let c∼ be a nice P ∗Q

∼
-name of c . By ②, | c∼| ≤ j(κ). By ④ it follows

that c∼∈ M. Thus c ∈ M by ③ , and hence b ∈ M. a
▶ Since crit(j) = κ, j(a) = a for all a ∈ (H(κ))V. Thus

idH(κ) = j ↾ H(κ)V : H(κ)V
≺→ H(j(κ))V[H].

▷ Since κ = ((2ℵ0)+)V and j(κ) = ((2ℵ0)+)V[H], it follows that
H((2ℵ0)+)V ≺ H((2ℵ0)+)V[H]. □□
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Thank you for your attention!
ご清聴ありがとうございました．

1 日本語
すべての人間は、生まれながらにして自由であり、かつ、尊厳と権利とに

ついて平等である。人間は、理性と良心とを授けられており、互いに同胞の
精神をもって行動しなければならない。

2 中国語・簡体字 简体中文
谢谢您的倾听。

3 中国語・繁体字

4 韓国語 한국어
관심을 가져 주셔서 감사합니다

1

Gracias por su atención.
Dziękuję za uwagę.
Grazie per l’attenzione.
Dank u voor uw aandacht.

Ich danke Ihnen für Ihre Aufmerksamkeit.

http://www2.kobe-u.ac.jp/~fuchino/kobe-set-theory-seminar/IMG_3171-panorama.JPG
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Proof of Lemma 7.
Lemma 7.([ CC ]) Suppose that P satisfies (†) and κ is P-gen. weakly-

compact. Then (1) κ is weakly Mahlo. (2) κ has the tree property.
Proof. We prove (1): Suppose that C ⊆ κ is a club. Let A ⊆ κ be
s.t. it codes C as well as witnesses of singularity of all singular
cardinals and being successor of successor cardinals < κ.

▶ Let M be a transitive model of ZFC− s.t. κ, A ∈ M and there is a
ν-cc p.o. P with (V,P)-generic G s.t. there are j , N ∈ V[G] with
j : M

≺→κ N.
▶ Note C ∈ M by A ∈ M. We have N |= “ j(C ) is a club subset of j(κ)”

by elementarity. Since j(C ) ∩ κ = C by crit(j) = κ, it follows that
κ ∈ j(C ). κ is regular. Since P preserves cardinality and cofinality
≥ ν by its ν-cc, V[G] |= “ κ is regular” . It follows that
N |= “ κ is regular” . Thus N |= “ j(C ) contains a regular cardinal”
and M |= “ C contains a regular cardinal” by elementarity. This
implies that κ is a weakly Mahlo cardinal. back
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A sketch of the proof of Proposition 3.
▶ We imitate the ultraproduct construction:
▷ Let G be a (V,P)-generic filter. We work in V[G]. Let

・ F := {f ∈ V : f : dom(f ) → V, dom(f ) ∈ H(θ)V}, and
・ Π := {〈f , a〉 : f ∈ F , a ∈ j0(dom(f ))}.

For 〈f , a〉, 〈g , b〉 ∈ Π, let

・ 〈f , a〉 ∼ 〈g , b〉 :⇔ 〈a, b〉 ∈ j0(Sf (x)=g(y)), where
Sf (x)=g(y) := {〈u, v〉 : u ∈ dom(f ), v ∈ dom(g), f (u) = g(v)};

and
・ 〈f , a〉 E 〈g , b〉 :⇔ 〈a, b〉 ∈ j0(Sf (x)εg(y)), where

Sf (x)εg(y) := {〈u, v〉 : u ∈ dom(f ), v ∈ dom(g), f (u) ∈ g(v)}.

▶ ① ∼ is a congruent relation to E ; Let f̌u : {∅} → {u} for u ∈ V,
then ② i : V → Π/∼; u 7→ 〈f̌u, ∅〉/∼ is an elementary embedding;
③ (Π/∼,E/∼) is well-founded and set-like; and ④ The
Mostowski collapse M of (Π/∼,E/∼) together with the canonical
embedding j of V into M is as desired. □□ back
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Proof of Theorem 2.
Theorem 2. ( [II] ) Suppose that each element of P is µ-cc for some

µ < κ. If κ is P-Laver-gen. superhuge then κ = 2ℵ0 .

Proof. Let P and κ be as above.
▶ 2ℵ0 ≥ κ follows from the following Lemma:

Lemma A1. (Lemma 5.5 in [II]) Suppose that P is a class of p.o.s
containing a p.o. P which adds a real. If κ is a P-Laver-gen.
supercompact, then 2ℵ0 ≥ κ.

Proof of Lemma A1.: Let P ∈ P be s.t. any generic filter over P
codes a new real.

▶ Suppose that µ < κ We have to show hat 2ℵ0 > µ.
▷ Let a⃗ = 〈aξ : ξ < µ〉 be a sequence of subsets of ω.
▶ It is enough to show that a⃗ does not enumerate P(ω).
▷ By P-Laver-gen. supercompactness of κ, there are P-name Q

∼
with

‖–P “ Q
∼

∈ P ”, (V,P ∗Q
∼
)-generic H and j ,M ⊆ V[H] s.t.

j : V ≺→κ M with P,H ∈ M.
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Proof of Theorem 2. (2/3)

▶ Since µ < κ, we have j(a⃗) = a⃗. Since H ∩ P ∈ M codes a real not
in V, we have

▷ M |= “ j(a⃗) does not enumerate P(ω)” .
By elementarity, it follows that

▷ V |= “ a⃗ does not enumerate P(ω)”. □□ (Lemma A1)
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Proof of Theorem 2. (3/3)
Theorem 2. ( [II] ) Suppose that each element of P is µ-cc for some

µ < κ. If κ is P-Laver-gen. superhuge then κ = 2ℵ0 .

Continuation of the Proof of Theorem 2.: We prove 2ℵ0 ≤ κ.
▶ Let λ ≥ κ, 2ℵ0 be sufficiently large and let P ∈ P , Q

∼
a P-name with

‖–P “ Q
∼

∈ P ”, and H a (V,P ∗Q
∼
)-generic set with j ,M ∈ V[H] s.t.

j : V ≺→κ M, (*) |P ∗Q
∼
| ≤ j(κ) > λ, H, P ∈ M, and (**) j ′′j(κ) ∈ M.

▶ Since κ is regular (this follows already from P-gen. largeness of κ),
M |= “ j(κ) is regular” by elementarity. By (**) it follows that j(κ)
is regular in V[H]. Hence it is also regular in V.

▶ By assumption P ∗Q
∼

has µ-cc for some µ < κ.
▶ Since the chain condition of P and P-gen. supercompactness of κ

implies SCH above 2<κ ([ II ]), we have V |= “ (j(κ))<µ = j(κ)”. By
(*) it follows that V[G |= “ 2ℵ0 ≤ j(κ)”. By (**) we have
(j(κ)+)M = (j(κ)+)V[H]. Thus M |= 2ℵ0 ≤ j(κ). By elementarity, it
follows that V |= 2ℵ0 ≤ κ. □□ (Theorem 2.)

back


