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Downward Loéwenheim-Skolem Theorem for First-Order Logic  dumardlish (2/21)

» We use the following notation: A structure 2 is a (first-order)
structure of countable signature (if not mentioned otherwise).

> For a structure 2, we denote with |2(| the underlying set of 2, and
|2(|| the cardinality (of the underlying set) of 2.

Cf.. if X is a set, we denote with | X | the cardinality of X.

Theorem 1. (Downward Léwenheim-Skolem Theorem) For any un-
countable cardinal x and a structure 2 (of countable signature) if
S C || is of cardinality <k, then there is B < A s.t. S C |B|
and [|B|| < k. i)



Lowenheim-Skolem Spectrum of a Logic Dowmvd LiSho (3/21)

» Let £ be a logic with the notion <, of elementary substructure.
The Lowenheim-Skolem spectrum of the logic £ is defined as:

LSS(L) := {u € Card : for any structure 2 of a countable signature
and S C || with | S| < p,
there is B <, A s.t. S C |*B| and ||B| < u}.

> Denoting the first-order logic with L, (the classical) Downward
Léwenheim-Skolem Theorem can be reformulated as:

Theorem 2. LSS(L) = {x € Card : kK > N1 }.
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Lemma 2a. For a logic £ (with natural properties expected to a
“logic”), we have

LSS(L) = {u € Card : for any structure 2 with a signature of
size < p, there is B <, A s.t. ||B| < u}.

Proof. “C": Suppose that p € LSS(L) and let 2 be a structure
with a signature of size v < p. W.l.o.g., we may assume that 2l is a
relational structure and A = (||, Rp.o)ncw,a<y Where R, is an
n-ary relation on [2(| for n € w and a < v. We may also assume,
w.l.o.g., that ||| > pand v C |2A|.

> Let R, = Uy 1@} X Ry foreach nc w. Let A~ := ([A], Rp) new.
Applying our assumption on p, we find B~ <, A~ with
B~ <pand v C |B~|. By the last condition, we can
reconstruct a submodel B of 2 from B~ with the same underlying
set and B <, 2.
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Lemma 2a. For a logic £ (with natural properties expected to a
“logic"), we have

LSS(L) = {u € Card : for any structure 2 with a signature of
size < pu, there is B <, A s.t. [|B|| < p}.

Proof. “C": Suppose that € LSS(L) and let 2 be a structure
with a signature of size v < j. W.l.o.g., we may assume that 2 is
a relational structure and A = (||, Ry.a)new,a<v Where Ry is an
n-ary relation on || for n € w and a < v. We may also assume,
w.lo.g, that ||| > pand v C |A.

Let Ry = Uqep{a} X Ry for each n € w. Let A~ := (|A|, Rn)new
Applying our assumption on i, we find B~ <, A~ with || B~ < p
and v C |B7|. By the last condition, we can reconstruct an £-
elementary submodel B of 2 from B~ with the same underlying set.

“D". Suppose now that s is in the set on the right side of the
equality. Let 2 be a structure of size > u with a countable
signature, and S € [ || |=*.

Let 2" = (2, a),c5. Applying the assumption on 1, we obtain

BT <, AT of size < 1. Denoting by B the B+ reduced to the

original language, we have [|B]] < u, S C |B| and B <, 2.
(Lemma 2a)



Lowenheim-Skolem Spectrum of L(Q) Dowmvd LiSho (6/21)

> Let L(Q) be the logic obtained from the first-order logic by adding
a new unary (first-order) quantifier Q which is interpreted by

A = Qx¢(x,...) < there are uncountably many a € || s.t.

A= p(a,...).

> <(q) is defined just as in the first-order logic for formulas of L(Q).

Theorem 3. LSS(L(Q)) = {x € Card : kK > Ny }.

Proof. Suppose that x > N, and 2[ is a structure with a countable
signature with ||| > .
Let 6 be a sufficiently large regular cardinal >w; with 2 € H(6).
For S e [ |A] ]<", let M < H(0) be s.t.

(1) AeM,

(2) w;,SCM,and

(3) [IM|<k Let B:= [A N Mand B :=2| B.



Lowenheim-Skolem Spectrum of L(Q)
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Theorem 3. LSS(L(Q)) = {~ € Card : k > Ny}.

Proof. Suppose that £ > N, and 2 is a structure with a countable
signature with |||| > x.
Let 6 be a sufficiently large regular cardinal >w; with A € H(6).
For S e [ [2A] ]<*, let M < H(f) be s.t.

(1) ~AeM,

(2) wi,SCM,and

(3) [M|<x Let B:= [A| N Mand B:=2B.

SCB= %, B <k.
Thus we are done by:

Claim. 8 '<L(Q) .

I It is enough to show:

> ME“AE p(bo, ..., ba-1)" < B = p(bo, ..., br—1)
for any L(Q)-formula ¢ = ¢(xo, ..., xn—1) and by, ..., by—1 € B.

> The crucial step of the induction proof:

M =42 = Qxib(x, by, ..., by_1)” < H(0) E“A = Qxt(x, bo, ..., by_1)”

< H(0) =“thereis 1-1 f 1wy — {a e |A
< M=“thereis 1-1 f 1wy — {a € || :
— {be A NM: ME“AE (b, by, ..

| | ': 1/J(37 bo, ..., bnfl)}”
A = ¥(a, bo, .., bp1)}”

, bp—1)"} is uncountable

< {be |B| : B (b, bo,..., bp—1)} is uncountable

by induction hypothesis and by the def. of B
< B E Qx(x, bo, ..., by—1), and
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Theorem 3. LSS(L(Q)) = {~ € Card : k > Ny}.

Proof. Suppose that £ > N, and 2 is a structure with a countable
signature with |||| > x.
Let 6 be a sufficiently large regular cardinal >w; with A € H(6).
For S e [ [2A] ]<*, let M < H(f) be s.t.

(1) ~AeM,

(2) wi,SCM,and

(3) [M|<x Let B:= [A| N Mand B:=2B.

SCB= %, B <k.
Thus we are done by:

Claim. 8 '<L(Q) .

I It is enough to show:

> M E“ = (bo, ..., bo1)’ = B = o(bo, ..., bp1)

for any L(Q)-formula ¢ = ¢(xo, ..., Xn—

1) and bo, ....bh_1 € B.

> The crucial step of the induction proof (reverse direction):

M 4 = Qxip(x, b, .., bp—1)" < H(0)

%“ 2 ': QX’lﬁ(X, b07 rees bn—l)’7

< H(0) E=“thereisal-1f:{aec |A : AE=1(a, bg,....by—1)} = W’
< M“thereis 1-1 f : {a € || : A E=1(a, by, ..., bp—1)} = W~

= {be A NM: ME“AEp(b, by, ...

< {be |B| : BEY(b,bo,...,bp—1)} is
by induction hypothesis and by the def. of B
< B Qxp(x, bo, ..., by—1).

, by—1)"} is countable
Theorem 5 is going to be
counta ble proved similarly.

— [@ ((Theorem 3.))



Full second order logic Dowmvad LSk (9/21)

» L' denotes the (monadic, full) second-order logic with second-order
variables X, Y, Z etc. running over all subsets of the underlying set
of a structure. In addition to the constructs of the first-order logic,
we have the symbol ¢ as a logical binary predicate and allow the
expression “x ¢ X" for a first order variable x and a second-order
variable X as an atomic formula. We also allow the quantification
of the form “3X" (and its dual “VX") over the second-order variables X.

> The relation symbol ¢ is interpreted as the (real) element relation
and the interpretation of the quantifier 3X in £l is defined by:

A = IX(0, ) am—1, Boy ooy Bno1, X) =
there exists a B € P(|2]) s.t. A = (a0, .--» am—1, Bo, ..., Bn—1, B)

for a first-order structure 2, an £"-formula ¢ in the signature of
the structure 2 with ¢ = ¢(xo, ..., Xm-1, X0, ---, Xn—1, X) where
X0, .-y Xm—1 and Xg, ..., Xp—_1, X are first- and second-order vari-
ables, ag, ..., am—1 € ||, and By, ..., Bp—1 € P(|2]).



Full second order logic (2/4) Do LSl (10/21)

B < A & B E p(bo,..., bp—1) holds if and only if A =
©(bo, ..., ba—1) holds for all formulas ¢ = ¢(xo, ...) in LI without
free second-order variables, and for all by, ..., b,—1 € |*B]|.

> Exclusion of second-order free variables and parameters in this
context is natural because of the following trivial example:

Example 4. Let B G A Let B = |B|. Then
2 = 3Ix (x gB) but B = —-3Ix (x gB).

Theorem 5. (M. Magidor [1971])
LSS(£Y) = {k : & is supercompact or a limit of supercompact cardinals}.

» A cardinal x is supercompact if, for any A > k, there are transitive
class M and elementary embedding j : V — M s.t. k is the smallest
ordinal moved by j (critical point of j: we denote these conditions
asj:V 5. M), j(k) > X and [M]* C M.



Full second order logic (3/4) Do Ll (11/21)

Theorem 5. (M. Magidor [1971]) Proof. “D": Suppose that
LSS(LM) = {k : & is supercompact or a limit of supercompact cardinals}. f |5 su percompact and A
» A cardinal x is supercompact if, for any A > k, there are transitive | 3 structure in a countable

class M and elementary embedding j : V — M s.t. k is the smallest . I .
ordinal moved by j (critical point of j: we denote these conditions as signature. W. 0.8, |Q[| IS a

VS M), (k) > X and [M]* € M. cardinal A and let S C [A]<".

» Letj:V 5. Mbes.t. j(k) > \and [M]* C M.
> Then 2, j(A) [j"A, jTAEM, MEjTA:ASj(A)],”\ and

P(IA)Y =P(|1A)M.  For any £"-formula ¢ = (xp, ...) without

free second order variables and any ag, ... € |21,  The idea of this proof is similar
to the proof of Theorem 3.

M=) E¢l(a0), ) < VEAE¢(a,...)
o MEAEp(a,..) & ME i) 17 E (i), )
> Thus M |= j(A) [j7A <o j(&), () T57Al < (),
J(S8)=j"S < [j(A) [j"Al
> By elementarity, it follows that
V [= thereis B <, n Ast. SC |B| and B < k.

Theorem 11. is going to be proved analogously.
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Theorem 5. (M. Magidor [1971])
LSS(£M) = {k : k is supercompact or a limit of supercompact cardinals}.

» A cardinal r is supercompact if, for any A > k, there are transitive
class M and elementary embedding j : V — M s.t. x is the smallest
ordinal moved by j (critical point of j: we denote these conditions as
J V5. M), j(k) > A and [M] € M.

» Since LSS(L) is closed for any logic £, the inclusion “2" follows
from this.

“C". The proof of this direction requires a heavier tool of set theory. |
will discuss about this proof in my next talk at:

» Kobe Set Theory Seminar
May 25, 2022 (We) | 16:00 — (zoom)

Sakaé Fuchino: On Magidor's characterization of supercompact cardinals
as Léwenheim-Skolem numbers of the second order logic

(0] (Theorem 5)


http://www2.kobe-u.ac.jp/~fuchino/kobe-set-theory-seminar/
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» L% denotes the weak (monadic) second-order logic with
second-order variables X, Y, Z etc. whose intended interpretation is that
they run over countable subsets of the underlying set of the structure.

> Similarly to the full second-order logic, we introduce, also in £%:11 the
element relation symbol ¢ as a logical predicate and allow the expression
“x e X" for a first order variable x and a weak second-order variable
X as an atomic formula. We also allow the quantification of the
form “3X" (or its dual “VX") over the weak second-order variables X.

> The relation symbol ¢ here is also interpreted as the element relation
and the interpretation of the quantifier 3X in £Xo:! is defined by

2A }i HXgo(ao, eeva@m—1, Bo, ..., Bp—1, X) =
there exists a B € [ || ]* s.t. A = ¢(ao, ..., am—1, Bo, ... Ba_1, B)
for a first-order structure 2, an £Xo:!_formula ¢ in the signature
of the structure 2 with ¢ = ¢(xo, ..., Xm—1, X0, ---, Xn—1, X) where

X0y -y Xm—1, and Xp, ..., Xp—1, X are first- and second-order vari-
ables, ag, ..., am—_1 € ||, and By, ..., Bo_1 € [ |2A] ]%°.
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» If we allow the weak second-order variables in Ng-interpretation and
the logical relation symbol & but no quantification over the weak
second-order variables, the resulting logic is called £°.

> E?,_?é,t is the logic obtained from £ by adding the stationarity
quantifier “stat X" (and its dual “aa X" (there are club many) but
neither the existential nor universal quantification over second-order
variables). The semantics of the logic is defined by

A ‘: stathp(ao, ey @m—1, Bo, ..., anl,X) =
{(Be[|A T : A= (ag, ..., am—1, Bo, ... Ba_1, B)}
is stationary
for a first-order structure 2, an £32.-formula ¢ in the signature of
20 with p = QO(X(), s Xm—1, X0, ...,Xn_l,X), aog,---,dm—-1 € ‘Qu
and By, ..., Bn_1 € [A].

» L2011 s the logic L0 with weak second-order quantifiers 3X, V.X.

stat



Weak second-order logics (3/4) Do 5o (15/21)

> Let £ be one of the logics introduced above. In contrast to the full
second-order logic, the notion of elementary submodels in terms of
first and second order parameters makes sense for L.

> For a logic £ with weak second-order variables, and structures 2, 5
with 28 C 2A:

B < A= B = ¢(by, ..., bm-1,A0, ..., An—1) holds if and
only if 2 &= ¢(bo, ..., bm—1, Ao, ..., An—1) holds for all L-formulas
¢ = @(x0,..., X0, ...), for all bg,...,bm—1 € |B|, and for all
Ao, s Anc1 € [ DB ]NO.

» We obtain a weaker notion of elementarity by dropping the
second-order parameters.

B <, A:s B ¢(bo, ..., bp—1) holds if and only if
A &= p(bg, ..., bm—1) holds for all L-formulas ¢ = ¢(xp, ..., Xm—1)
without free second-order variables, and for all by, ..., b;m—1 € |B].




Weak second-order logics (4/4) Do 5o (16/21)

» We we consider £8011 80 et with < R0l < no etc. by

stat

default. When we consider £X0:II etc. together with ~ nom EtC. we
shall write £80:11— 280 = etc.

» We call a cardinal s -Ro-closed if ;0 < & holds for all 11 < k.

Proposition 6. (Fuchino, Ottenbreit Maschio Rodrigues, and Sakai [2021])
LSS(£N0) = LSS(LNo1 =) = LSS(LRoM) = {k € Card : & is -No-closed }.

Proof. The non-trivial direction (of inclusion) is proved similarly to
Theorem 3 or Theorem 5, using M < H(6) with [M]¥ C M.

> Note that, if 4 < 6 is -Yo-closed then there is M < H(6) as above
with | M| = p. (Proposition 6.)

Corollary 7. (Fuchino, Ottenbreit Maschio Rodrigues, and Sakai [2021])
Ny € LSS(LM) < CH. [
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Theorem 8. (see Fuchino, Ottenbreit Maschio Rodrigues, and Sakai [2021])
For any n € N, n > 2, the statements "R, € LSS(Lo% )"

stat
and “R, € LSS(Li%t")" are independent from ZFC (modulo
consistency strength of the caliber “supercompact”. Known lower

bound: class many Woodin cardinals).

Theorem 9. (Fuchino, Ottenbreit Maschio Rodrigues, and Sakai [2022])

“2Ro ¢ |SS(L£R )" is consistent with ZFC (modulo consistency
strength similar to above) and it implies 2% = X,.

> The consistency in Theorem 8 and Theorem 9 will be shown in next
slides.

> The independence of Theorem 8 can be shown e.g. by V = L. But

we can further localize the reason of R, & LSS(£5%1 ).



LSS(£2%") can contain “small” cardinals Dovnvar 50 (18/21)

» A cardinal k is said to be generically supercompact by o-closed p.o.s
(or o-closed gen. supercompact, for short) if, for any A\ > &, there
are o-closed p.o. P (V,P)-generic G, j, M C V[G] s.t.

V[G] =j:V 3. Mj(k) > Xand j”\ e M.

Lemma 9a. (Easy) If x is o-closed gen. supercompact then & is regular
and > 2%o, [

Lemma 10. (Folklore 7) If k is supercompact and P = Col(y, k)
for a regular 4 < k, Then P forces "k = u™ is o-closed gen.
supercompact (actually < u-closed gen. supercompact)”. Isj

Ro,II
stat )-

Theorem 11. If k is o-closed gen. supercompact, then xk € LSS(L

Corollary 12. Suppose that (ZFC + ) “there is a supercompact
cardinal” is consistent, then for each n > 2, R, € LSS(£3M)
(C LSS(£%2,)) is consistent. @
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Theorem 11. If  is o-closed gen. supercompact, then x € LSS(Lo%r).

Proof. This can be shown similarly to the proof of Theorem 5., “C
» Assume that k is o-closed gen. supercompact. Suppose 2 is a structure
with ||| > xand S e[ |2 |=". W.Lo.g., assume |2 = |2].
> Let P be a o-closed p.o. s.t. for a (V,P)-generic G, there are j,
M CV[G] st j:V 5. M, j(k) > || and j” || € M.
> Then B :=j(A) [ j” ||| € M. Since j | || € M we also have
AeMand M= | [ :AS B.
> By o-closedness of P we have ([ || ]*0)V = ([ 2] [¥)M. Also, all

stationary subsets (club subsets resp.) of ([ || ]*¢)V remain
stationary (club resp.) in M.

> Thus, M= 5B < g J(2), |B]) < i(s), 4(S) € 18],
By elementarity, in V, there is € < xon As.t. [|€] <k, SC [€].
- (] (Theorem 11.)



Uncountable Coloring number of graphs Dovnvar 50 (20/21)
» | learned the following theorem in a tutorial lecture of Menachem
Magidor:

Theorem 13. Suppose x = min LSS(£X2). Then for any graph G =
(G, E) with col(G) > Ny, there is Gy € [G]<" s.t. col(Gp) > No.
Or, equivalently, for any graph G = (G, E), if col(Gy) < R for
all Go € [G]<", then col(G) < Ry. i)

» | will discuss about this and some other applications of
Léwenheim-Skolem Theorems of non first-order logics in:
» Kobe Set Theory Seminar
June 12022  (We) | 16:00 — (zoom)

Sakaé Fuchino: On Léwenheim-Skolem number and compactness
number of some non first-order logics
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