Laver-generically large cardinal and the Continuum Problem

Sakaé Fuchino (渕野 昌) Kobe University, Japan

https://fuchino.ddo.jp/index.html

(2021年03月27日 (01:01 JST) version)

2021 年 03 月 26 日 (10:30 EDT, 於 Toronto Set theory Seminar) This presentation is typeset by upLATEX with beamer class, and given on UP2 Version 2.0.0 by Ayumu Inoue

The most up-to-date version of these slides is downloadable as https://fuchino.ddo.jp/slides/toronto-2021-pf.pdf

This research is supported by Kakenhi Grant-in-Aid for Scientific Research (C) 20K03717

Generically large cardinals

▶ For a p.o. \mathbb{P} , A cardinal μ is generically measurable by \mathbb{P} , if, for any (V, \mathbb{P}) -generic \mathbb{G} , there are j, $M \subseteq \mathsf{V}[\mathbb{G}]$ s.t.

(1)
$$j: V \xrightarrow{\gamma} M \subseteq V[\mathbb{G}]; \text{ and } (2) \quad crit(j) = \mu.$$

▷ For a calss \mathcal{P} of p.o.s, μ is generically measurable by \mathcal{P} , if μ is generically measurable by some $\mathbb{P} \in \mathcal{P}$.

Lemma 1. (1) If κ is measurable then κ is generically measurable by any class \mathcal{P} of p.o.s with $\{1\} \in \mathcal{P}$.

(2) Suppose that κ is measurable, $\aleph_0 < \delta < \kappa$ regular, and $\mathbb{P} = \operatorname{Col}(\delta, \kappa)$. Then, in V[G] for any (V, P)-generic G, δ^+ (= κ) is generically measurable by σ -closed p.o.s. In the generic extension, 2^{\aleph_0} can be anything of uncountable cofinality between \aleph_1 and δ .

(3) Suppose that κ is measurable, and ℙ is a p.o. for adding ≥ κ Cohen reals. Then, in V[G] for any (V, ℙ)-generic G, κ ≤ 2^{ℵ0} and κ is generically measurable by p.o.s adding Cohen reals.

Generically large cardinals (2/4)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- **Lemma 2.** Suppose that μ is a generically measurable cardinal by some \mathbb{P} . Then, (1) μ is regular.
- (2) If P is ℵ₁ preserving then μ > ℵ₁.
 Proof. (1): Suppose not and let f : μ₀ → μ be cofinal with μ₀ < μ.
 ▷ Let G, j, M be as in the definition of generic measurability by P. Then j(f) = f by elementarity and crit(j) = μ.
- ▷ By elementarity,

$$M \models j(\mu) = \sup(\underbrace{j(f)}_{=f}) = \mu$$

- \triangleright This is a contradiction to $\mu = crit(j)$.
- ▶ (2): Suppose not. Then $\mu = \omega_1$.
- ▷ Let \mathbb{G} , j, M be as in the definition of generic measurability by \mathbb{P} . Then $M \models "j(\mu) = \omega_1$ ". Hence $M \models "\mu$ is countable". Thus $V[\mathbb{G}] \models "\mu$ is countable".
- \triangleright This is a contradiction to the assumption on \mathbb{P} . \Box (Lemma 2)

Generically large cardinals (3/4)

- For a class of p.o.s P, a cardinal µ is generically supercompacrt (generically super-almosthuge or generically superhuge, resp.) by P if, for any λ ≥ µ, there are ℙ ∈ P, (V, ℙ)-generic G, and j, M ⊆ V[G] s.t.
- (1) $j: V \stackrel{\leq}{\to} M \subseteq V[\mathbb{G}],$ (2) $crit(j) = \mu, j(\mu) > \lambda,$ (3) $j''\lambda \in M$ $(j''\delta \in M \text{ for all } \delta < j(\mu) \text{ or } j''j(\mu) \in M, \text{ resp.})$

Generically large cardinals (4/4)

- ▶ The following Lemma is similar to Lemma 1:
- **Lemma 3.** (1) If κ is supercompact (super-almosthuge, or superhuge, resp.) then κ is generically supercompact (super-almosthuge, or superhuge, resp.) by $\mathcal{P} = \{\mathbb{P}\}$ for $\mathbb{P} = \{\mathbb{1}\}$.
- (2) Suppose that κ is supercompact (super-almosthuge, or superhuge, resp.), $\aleph_0 < \delta < \kappa$ regular, and $\mathbb{P} = \operatorname{Col}(\delta, \kappa)$. Then, in V[G] for any (V, P)-generic G, δ^+ (= κ) is generically supercompact (super-almosthuge, or superhuge, resp.) by σ -closed p.o.s. In the generic extension, 2^{\aleph_0} can be anything of uncountable cofinality between \aleph_1 and δ .
- (3) Suppose that κ is supercompact (super-almosthuge, or superhuge, resp.), and \mathbb{P} is a p.o. for adding $\geq \kappa$ Cohen reals. Then, in V[G] for any (V, \mathbb{P}) -generic G, $\kappa \leq 2^{\aleph_0}$ and κ is generically supercompact (super-almosthuge, or superhuge, resp.) by p.o.s adding Cohen reals.

" $j'' \lambda \in M$ " as a closure property

э

- " $i'' \lambda \in M$ " in the definition of generic large cardinals is a closure property of M:
- **Lemma 4 (Folklore, [11]).** Suppose that \mathbb{G} is a (V, \mathbb{P}) -generic filter for a p.o. $\mathbb{P} \in \mathsf{V}$ and $j: \mathsf{V} \xrightarrow{\leq} M \subseteq \mathsf{V}[\mathbb{G}]$ s.t., for cardinals κ, λ in V with $\kappa \leq \lambda$, $crit(j) = \kappa$ and $j''\lambda \in M$.
 - (1) For any set $A \in V$ with $V \models |A| \le \lambda$, we have $i''A \in M$.
 - (2) $i \upharpoonright \lambda, i \upharpoonright \lambda^2 \in M$.
 - (3) For any $A \in V$ with $A \subseteq \lambda$ or $A \subseteq \lambda^2$ we have $A \in M$.
 - (4) $(\lambda^+)^M > (\lambda^+)^V$, Thus, if $(\lambda^+)^V = (\lambda^+)^{V[\mathbb{G}]}$, then $(\lambda^+)^M =$ $(\lambda^+)^{\vee}$
 - (5) $\mathcal{H}(\lambda^+)^{\mathsf{V}} \subset M$.
 - (6) $i \upharpoonright A \in M$ for all $A \in \mathcal{H}(\lambda^+)^{\vee}$.

III S.F., André Ottenbreit Maschio Rodrigues and Hiroshi Sakai, Strong downward Löwenheim-Skolem theorems for stationary logics II — reflection down to the continuum. Back to the proof of Theorem 8. to appear in Archive for Mathematical Logic (2021). $\langle \Box \rangle$

Laver-generically large cardinal

- ▶ A class \mathcal{P} of p.o.s is iterable if $\mathbb{P} \in \mathcal{P}$ and $\| -\mathcal{P}^{"} \otimes \mathcal{R} \in \mathcal{P}^{"}$ then $\mathbb{P} * \otimes \mathcal{R} \in \mathcal{P}$.
- For an iterable class of p.o.s P, a cardinal µ is Laver-generically supercompacrt (Laver-generically super-almosthuge or Laver-generically superhuge, resp.) for P if, for any λ ≥ µ, and P ∈ P, there are Q ∈ P with P ≤ Q, (V, Q)-generic H, and j, M ⊆ V[H] s.t.

(0)*
$$\mathbb{Q} \cong \mathbb{P} * \mathbb{R}$$
 for a \mathbb{P} -name \mathbb{R} with $\Vdash_{\mathbb{P}}^{"} \mathbb{R} \in \mathcal{P}$ ",
(1) $j: V \stackrel{\leq}{\to} M \subseteq V[\mathbb{H}]$,
(2) $crit(j) = \mu, j(\mu) > \lambda$,
(2 ¹/₄)* $\mathbb{P}, \mathbb{H} \in M$,
(2 ¹/₂)* $|\mathbb{Q}| \leq j(\mu)$,
(3) $j''\lambda \in M$ $(j''\delta \in M$ for all $\delta < j(\mu)$ or $j''j(\mu) \in M$, resp.)

Consistency of Laver-generically large cardinals Lavergen large cardinal (8/13)

- **Lemma 5.** (1) Suppose that κ is supercompact (super-almosthuge, or superhuge, resp.) and $\mathbb{P} = \operatorname{Col}(\aleph_1, \kappa)$. Then, in V[G] for any (V, \mathbb{P}) -generic $\mathbb{G}, \aleph_2 (= \kappa)$ is Laver-generically supercompact (super-almosthuge, or superhuge, resp.) for σ -closed p.o.s.
 - (2) Suppose that κ is super-almosthuge (or superhuge, resp.) with a Laver function f, and \mathbb{P} is the CS-iteration for forcing PFA along f. Then, in V[G] for any (V, P)-generic G, \aleph_2 (= $2^{\aleph_0} = \kappa$) is Lavergenerically super-almosthuge (or superhuge, resp.) for proper p.o.s.
 - (3) Suppose that κ is supercompact (super-almosthuge, or superhuge, resp.) and $\mathbb{P} = \operatorname{Fn}(\kappa, 2)$. Then, in V[G] for any (V, P)generic \mathbb{G} , 2^{\aleph_0} (= κ) is Laver-generically supercompact (superalmosthuge, or superhuge, resp.) for Cohen p.o.s.
 - (4) Suppose that κ is supercompact (super-almosthuge, or superhuge, resp.) with a Laver function f, and \mathbb{P} is a FS-iteration for forcing MA along f. Then, in V[G] for any (V, \mathbb{P}) -generic G, 2^{\aleph_0} $(= \kappa)$ is Laver-generically supercompact (super-almosthuge, or superhuge, resp.) for c.c.c. p.o.s. ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

The continuum under a Laver-generically large cardinal Lavergen. Large cardinal (9/13)

Proposition 6 ([II]). (1) Suppose that μ is Laver-genenerically supercompact for an iterable class \mathcal{P} of ω_1 -preserving p.o.s s.t. there is a $\mathbb{P}^* \in \mathcal{P}$ which collapses ω_2 . Then $\mu = \omega_2$.

- (2) Suppose that μ is Laver-generically supercompact for an iterable class \mathcal{P} of p.o.s with at least one $\mathbb{P}^* \in \mathcal{P}$ which adds a new real. Then $\mu \leq 2^{\aleph_0}$.
- (3) Suppose that μ is generically supercompact by a class \mathcal{P} of p.o.s s.t. no $\mathbb{P} \in \mathcal{P}$ adds any real^(*). Then $2^{\aleph_0} < \mu$.

(*) Here, the generic supercompactness (without "Laver") is enough.

 S.F., André Ottenbreit Maschio Rodrigues and Hiroshi Sakai, Strong downward Löwenheim-Skolem theorems for stationary logics II

 reflection down to the continuum, to appear in Archive for Mathematical Logic (2021).
 Rest to the proof of Theorem 8

 Laver-generic superhugeness decides more about the continuum Laver-gen large cardinal (10/13)

- **Theorem 7 (Proposition 2.8 in [II]).** Suppose that μ is Lavergenerically supercompact for c.c.c. p.o.s. Then,
 - (1) SCH holds.
 - (2) there is a σ -saturated normal filter over $\mathcal{P}_{\mu}(\lambda)$ for all regular $\lambda \geq \mu$.
- **Theorem 8 (Theorem 5.8 in [II]).** Suppose that μ is Lavergenerically superhuge for c.c.c. p.o.s. Then $\mu = 2^{\aleph_0}$.

Proof.

Problem. Does Theorem 8 hold for Laver-generic supercompactness?

 [II] S.F., André Ottenbreit Maschio Rodrigues and Hiroshi Sakai, Strong downward Löwenheim-Skolem theorems for stationary logics II

 reflection down to the continuum, to appear in Archive for Mathematical Logic (2021).
 reflection down to the continuum,

MA⁺⁺ under Laver-generically large cardinal

Theorem 9 (Theorem 5.7 in [II]). (1) For a class \mathcal{P} of ccc p.o.s, if μ is Laver-generically supercompact for \mathcal{P} , then MA^{++ κ}($\mathcal{P}, < \mu$) holds for all $\kappa < \mu$.

(2) If \aleph_2 is Laver-generically supercompact for an iterable class \mathcal{P} of p.o.s which preserves stationarity of subsets of ω_1 , then $MA^{+\omega_1}(\mathcal{P})$ holds.

 $\begin{aligned} \mathsf{MA}^{++\kappa}(\mathcal{P},<\mu): & \text{For any } \mathbb{P}\in\mathcal{P}, \text{ any family } \mathcal{D} \text{ of dense subsets of } \mathbb{P} \\ & \text{with } |\mathcal{D}|<\mu \text{ and any family } \mathcal{S} \text{ of } \mathbb{P}\text{-names s.t. } |\mathcal{S}|\leq\kappa \text{ and} \\ & \|\vdash_{\mathbb{P}}``\mathcal{S} \text{ is a stationary subset of } \mathcal{P}_{\eta_{\widetilde{\mathcal{S}}}}(\theta_{\widetilde{\mathcal{S}}})`` \text{ for some} \\ & \omega<\eta_{\widetilde{\mathcal{S}}}\leq\theta_{\widetilde{\mathcal{S}}}\leq\kappa \text{ with } \eta_{\widetilde{\mathcal{S}}} \text{ regular, for all } \widetilde{\mathcal{S}}\in\mathcal{S}, \text{ there is a } \mathcal{D}\text{-generic} \\ & \text{filter } \widetilde{\mathbb{G}} \text{ over } \mathbb{P} \text{ s.t. } \mathcal{S}(\mathbb{G})` \text{ is stationary in } \mathcal{P}_{\eta_{\widetilde{\mathcal{S}}}}(\theta_{\widetilde{\mathcal{S}}}) \text{ for all } \widetilde{\mathcal{S}}\in\mathcal{S}. \end{aligned}$

Summary

By putting together the results explained so far, the following three scenarios stand out:

Conclusion 10 ([II]). (1) Suppose that μ is Laver-generically supercompact for σ -closed p.o.s. Then, $2^{\aleph_0} = \aleph_1$, $\mu = \aleph_2$, and MA^{+ ω_1}(σ -closed) holds.

- (2) Suppose that μ is Laver-generically supercompact for proper p.o.s. Then $2^{\aleph_0} = \mu = \aleph_2$, and PFA^{+ ω_1} holds.
- (3) Suppose that μ is Laver-generically superhuge for ccc p.o.s. Then $2^{\aleph_0} = \mu$ and $\mathcal{P}_{\mu}(\lambda)$ for any regular $\lambda \geq \mu$ carries an \aleph_1 -saturated normal ideal. In particular, μ is μ -weakly Mahlo. Also $\mathsf{MA}^{++\kappa}(\mathsf{ccc}, <\mu)$ for all $\kappa < \mu$ holds.

References

- S.F., André Ottenbereit Maschio Rodriques, and Hiroshi Sakai, Strong downward Löwenheim-Skolem theorems for stationary logics, I, Archive for Mathematical Logic Vol.60, 1-2, (2021), 17–47. http://fuchino.ddo.jp/papers/SDLS-x.pdf
- [II] S.F., André Ottenbereit Maschio Rodriques, and Hiroshi Sakai, Strong downward Löwenheim-Skolem theorems for stationary logics, II — reflection down to the continuum, to appear in Archive for Mathematical Logic. http://fuchino.ddo.jp/papers/SDLS-II-x.pdf
- [III] S.F., André Ottenbereit Maschio Rodriques, and Hiroshi Sakai, Strong downward Löwenheim-Skolem theorems for stationary logics, III — mixed support iteration, to appear in the Proceedings of the Asian Logic Conference 2019. https://fuchino.ddo.jp/papers/SDLS-III-xx.pdf
- [IV] S.F., and Hiroshi Sakai, Strong downward Löwenheim-Skolem theorems for stationary logics, IV — more about Laver functions, in preparation.
- [V] S.F., and Adré Ottenbereit Maschio Rodriques, Reflection principles, generic large cardinals, and the Continuum Problem, in: Advances in Mathematical Logic / Dedicated to the Memory of Professor Gaisi Takeuti, SAML 2018, Kobe, Japan, September 2018, Springer Proceedings in Mathematics and Statistics, to appear.

https://fuchino.ddo.jp/papers/refl_principles_gen_large_cardinals_continuum_problem-x.pdf

Thank you for your attention! ご清聴ありがとうございました.

Proof of Lemma 1, (2)

▶ Lemma 1, (2) and (3) can be proved similarly.

(2) Suppose that κ is measurable, $\aleph_0 < \delta < \kappa$ regular, and $\mathbb{P} = \operatorname{Col}(\delta, \kappa)$. Then, in V[G] for any (V, P)-generic G, δ^+ (= κ) is generically measurable by σ -closed p.o.s. In the generic extension, 2^{\aleph_0} can be anything of uncountable cofinality between \aleph_1 and δ .

Proof. \blacktriangleright Let \mathbb{P} and \mathbb{G} be as above. Let $j : V \stackrel{\leq}{\to} M$ be the elementary embedding characterizing the measurability with ${}^{\kappa}M \subseteq M$. \triangleright Let $\mathbb{P}^* = j(\mathbb{P})$. Then, by elementarity and the closure property, $j(\mathbb{P}) = \operatorname{Col}(\delta, j(\kappa))$. Let $\mathbb{P}^* = j(\mathbb{P})$. Then we have $\mathbb{P}^* \sim \mathbb{P} \times \mathbb{P}^*$.

- $\succ \text{ Let } \mathbb{H} \text{ be a } (V[\mathbb{G}], \mathbb{P}^*) \text{-generic}$ filter. Let \mathbb{H}^* be the (V, \mathbb{P}^*) -generic filter corresponding to $\mathbb{G} \times \mathbb{H}$.
- ► Then $j^* : V[\mathbb{G}] \xrightarrow{\prec} M[\mathbb{H}^*] \subseteq V[\mathbb{G}][\mathbb{H}]; a^{\mathbb{G}} \mapsto j(a)^{\mathbb{H}^*}$ witnesses the generic measurability of κ in $V[\mathbb{G}]$.

Proof of Theorem 8.

Theorem 8 (Theorem 5.8 in [II]). Suppose that μ is Lavergenerically superhuge for c.c.c. p.o.s. Then $\mu = 2^{\aleph_0}$.

Proof. \blacktriangleright $\mu \leq 2^{\aleph_0}$ follows from Proposition 6, (2).

- ► To prove $2^{\aleph_0} \leq \mu$, let $\lambda \geq \mu$, 2^{\aleph_0} be large enough and let \mathbb{Q} be a ccc p.o. s.t. there are (V, \mathbb{Q}) -generic \mathbb{H} and $j : V \stackrel{\preccurlyeq}{\to} M \subseteq V[\mathbb{H}]$ with $crit(j) = \mu$, $\lambda < j(\mu)$, $|\mathbb{Q}| \leq j(\mu)$, $\mathbb{H} \in M$ and $j''j(\mu) \in M$.
- ▷ Since $M \models ij(\mu)$ is regular" (by Lemma 2, (1) and elementarity), $j(\mu)$ is regular in V (by Lemma 4, (3)).
- \triangleright Thus, we have $V \models "j(\mu)^{\aleph_0} = j(\mu)$ " by SCH (Theorem 7, (1)).
- ▷ Since \mathbb{Q} has the ccc and $|\mathbb{Q}| \leq j(\mu)$, it follows that $V[\mathbb{G}] \models 2^{\aleph_0} \leq j(\mu)^n$. By Lemma 4, (4), $(j(\mu)^+)^M = (j(\mu)^+)^{V[\mathbb{G}]}$. Thus $M \models 2^{\aleph_0} \leq j(\mu)^n$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Proof of Proposition 6, (3)

Proposition 6, (3) Suppose that μ is generically supercompact by a class \mathcal{P} of p.o.s s.t. no $\mathbb{P} \in \mathcal{P}$ adds any real. Then $2^{\aleph_0} < \mu$.

Proof. Suppose that $\mu \leq 2^{\aleph_0}$. Let $\lambda > 2^{\aleph_0}$, μ .

▷ Let $\mathbb{P} \in \mathcal{P}$, (V, \mathbb{P}) -generic \mathbb{G} , and j, $M \subseteq V[\mathbb{G}]$ be s.t. $j : V \xrightarrow{\preccurlyeq} M$, $crit(j) = \mu$, and $j(\mu) > \lambda$.

 \triangleright Since V $\models 2^{\aleph_0} \ge \mu$ by assumption, we have

$$M \models ``| \underbrace{(^{\omega}2)^{M}}_{\subseteq (^{\omega}2)^{\mathbf{V}[\mathbb{G}]}} = (^{\omega}2)^{\mathbf{V}} > \lambda > (2^{\aleph_{\mathbf{0}}})^{\mathbf{V}}$$

This is a contradiction.

 \Box (Proposition 6, (3))

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへつ

Back

Proof of Proposition 6, (2)

Proposition 6, (2) Suppose that μ is Laver-generically supercompact for an iterable class \mathcal{P} of p.o.s with at least one $\mathbb{P}^* \in \mathcal{P}$ which adds a new real. Then $\mu \leq 2^{\aleph_0}$.

Proof. Suppose that $\kappa < \mu$ and $\langle a_{\alpha} : \alpha < \kappa \rangle$ is a sequence of reals. It is enough to show that $\langle a_{\alpha} : \alpha < \kappa \rangle$ does not enumerate reals.

▷ Let $\mathbb{Q} \in \mathcal{P}$, $\mathbb{P}^* \leq \mathbb{Q}$ be with a (V, \mathbb{Q}) -generic \mathbb{H} , j, $M \subseteq V[\mathbb{H}]$ s.t. \mathbb{P}^* , $\mathbb{H} \in M$, $j : V \xrightarrow{\prec} M$ and $crit(j) = \mu$.

$$\triangleright \ j(\langle \mathbf{a}_{\alpha} : \alpha < \kappa \rangle) = \langle \mathbf{a}_{\alpha} : \alpha < \kappa \rangle.$$

- $\triangleright \text{ Since } M \text{ contains a new real coded by } \mathbb{P}^* \text{ part of } \mathbb{H}, \text{ we have } M \models ``\langle a_\alpha : \alpha < \kappa \rangle \text{ does not enumerate } 2^{\aleph_0} ".$
- \triangleright By elementarity, V \models " $\langle a_{\alpha} : \alpha < \kappa \rangle$ does not enumerate 2^{\%0}".

 \Box (Proposition 6, (2))

Back

Proof of Proposition 6, (1)

Proposition 6, (1) Suppose that μ is Laver-genenerically supercompact for an iterable class \mathcal{P} of ω_1 -preserving p.o.s s.t. there is a $\mathbb{P}^* \in \mathcal{P}$ which collapses ω_2 . Then $\mu = \omega_2$.

Proof. We have $\mu \geq \omega_1$ by Lemma 2, (2). Suppose $\mu > \aleph_2$.

 $\succ \text{ Suppose that } \mathbb{Q} \in \mathcal{P} \text{ be s.t. } \mathbb{P}^* \leq \mathbb{Q} \text{ with } (\mathsf{V}, \mathbb{Q}) \text{-generic } \mathbb{H} \text{ and } j,$ $M \subseteq \mathsf{V}[\mathbb{G}] \text{ s.t. } j : \mathsf{V} \xrightarrow{\preccurlyeq} M, \ crit(j) = \mu \text{ and } \mathbb{P}^*, \ \mathbb{H} \in M.$

▷ By elementarity, we have $M \models "\underbrace{j(\omega_2^{\mathsf{V}})}_{=\omega_2^{\mathsf{V}}}$ is " ω_2 " ".

▷ On the other hand, \mathbb{P}^* part of \mathbb{H} is in M and it collapses ω_2 to be an ordinal of cardinality \aleph_1 . This is a contradiction. (Proposition 6, (1))

Back