The trichotomy of the possible size of the continuum under the existence of a Laver-generic large cardinal

渕野 昌 (Sakaé Fuchino)

主な更新日: 19.06.03(Mo12:35(JST)) 19.05.30(Th23:18(JST))

2019年6月3日(12:35)版

Definition 0.1 For a cardinal κ and a class \mathcal{P} of posets, we call κ a Laver-generically supercompact for \mathcal{P} if, for any $\lambda \geq \kappa$ and any $\mathbb{P} \in \mathcal{P}$, there are a poset $\mathbb{Q} \in \mathcal{P}$ with $\mathbb{P} \leq \mathbb{Q}$ and (V, \mathbb{Q}) -generic filter \mathbb{H} such that there are an inner model $M \subseteq \mathsf{V}[\mathbb{H}]$ and a class function $j \subseteq \mathsf{V}[\mathbb{H}]$ with

- $(0.1) \qquad j: \mathsf{V} \xrightarrow{\prec} M,$
- $(0.2) \qquad crit(j) = \kappa, \ j(\kappa) > \lambda,$
- (0.3) $\mathbb{P}, \mathbb{H} \in M \text{ and }$
- $(0.4) \qquad j''\lambda \in M.$

A cardinal κ is called Laver-generically superhuge (super almost-huge, resp.), if the conditions in Definition 0.1 holds with (0.4) replaced by

(0.5)
$$j''j(\kappa) \in M \ (j''\mu \in M \text{ for all } \mu < j(\kappa), \text{ resp.}).$$

A cardinal κ is tightly Laver-generically supercompact (superhuge, super almost-huge, resp.) if we have

 $(0.6) \qquad |\mathbb{Q}| = j(\kappa)$

in addition for the poset \mathbb{Q} in the definition of Laver-generial supercompactness (superhugeness, super almost-hugeness, resp.) **Lemma 0.1** (Lemma 2.4 in [2]) Suppose that \mathbb{G} is a (V), \mathbb{P} -generic filter for a poset $\mathbb{P} \in \mathsf{V}$ and $j : \mathsf{V} \xrightarrow{\prec} M \subseteq \mathsf{V}[\mathbb{G}]$ such that, for cardinals κ , λ in V with $\kappa \leq \lambda$, $crit(j) = \kappa$ and $j''\lambda \in M$.

- (1) For any set $A \in V$ with $V \models |A| \le \lambda$, we have $j''A \in M$.
- (2) $j \upharpoonright \lambda, j \upharpoonright \lambda^2 \in M.$
- (3) For any $A \in V$ with $A \subseteq \lambda$ or $A \subseteq \lambda^2$ we have $A \in M$.
- (4) $(\lambda^+)^M \ge (\lambda^+)^{\mathsf{V}}$, Thus, if $(\lambda^+)^{\mathsf{V}} = (\lambda^+)^{\mathsf{V}[\mathbb{G}]}$, then $(\lambda^+)^M = (\lambda^+)^{\mathsf{V}}$.
- (5) $\mathcal{H}(\lambda^+)^{\mathsf{V}} \subseteq M$.
- (6) $j \upharpoonright A \in M$ for all $A \in \mathcal{H}(\lambda^+)^{\mathsf{V}}$.

Theorem 0.2 (Theorem 6.2 in [2]) (1) Suppose that ZFC + "there exists a supercompact cardinal (super almost-huge cardinal, superhuge cardinal, resp.)" is consistent. Then ZFC + "there exists a tightly Laver-generically supercompact cardinal (super almost-huge cardinal, superhuge cardinal, resp.) for σ -closed posets" is consistent as well.

(2) Suppose that ZFC + "there exists a superhuge cardinal" is consistent. Then ZFC + "there exists a tightly Laver-generically super almost-huge cardinal" is consistent as well.

(3) Suppose that ZFC + "there exists a supercompact cardinal (superhuge cardinal, resp.)" is consistent. Then ZFC + "there exists a tightly Laver-generically supercompact cardinal (super almost-huge cardinal, resp.) for ccc posets" is consistent as well.

Proposition 0.3 (1) (Lemma 6.3 in [2]) Suppose that κ is generically measurable by a ω_1 preserving \mathbb{P} . Then $\kappa > \omega_1$.

(2) (Lemma 6.4 in [2]) Suppose that κ is Laver-generically supercompact for ω_1 -preserving \mathcal{P} with $\operatorname{Col}(\omega_1, \{\omega_2\}) \in \mathcal{P}$. Then we have $\kappa = \omega_2$.

(3) (Lemma 6.5 in [2]) Suppose that \mathcal{P} is a class of posets containing a poset \mathbb{P} such that any (V, \mathbb{P}) -generic filter \mathbb{G} codes a new real. If κ is a Laver-generically supercompact for \mathcal{P} , then $\kappa \leq 2^{\aleph_0}$.

(4) (Lemma 6.6 in [2]) Suppose that \mathcal{P} is a class of posets such that elements of \mathcal{P} do not add any reals. If κ is generically supercompact by \mathcal{P} , then we have $2^{\aleph_0} < \kappa$.

(5) (Proposition 2.7 in [2]) Suppose that κ is generically supercompact for a class \mathcal{P} of posets such that all $\mathbb{P} \in \mathcal{P}$ are μ -cc for some $\mu \in Card$. Then

(a) SCH holds above $\max\{2^{<\kappa}, \mu\}$.

(b) For all regular $\lambda \geq \kappa$, there is a μ -saturated normal fine filter over $\mathcal{P}_{\kappa}(\lambda)$.

(6) (Theorem 6.8 in [2]) If κ is tightly Laver-generically superhuge for ccc posets, then $\kappa = 2^{\aleph_0}$.

For a class \mathcal{P} of posets and cardinals μ , κ , we consider the following strengthening of the forcing axiom for \mathcal{P} :

 $\begin{aligned} \mathsf{MA}^{+\mu}(\mathcal{P}, <\kappa): & \text{For any } \mathbb{P} \in \mathcal{P}, \text{ any family } \mathcal{D} \text{ of dense subsets of } \mathbb{P} \text{ with } |\mathcal{D}| < \kappa \text{ and any} \\ & \text{family } \mathcal{S} \text{ of } \mathbb{P}\text{-names such that } |\mathcal{S}| \leq \mu \text{ and } \Vdash_{\mathbb{P}} ``\mathcal{S} \text{ is a stationary subset of } \omega_1 ``\\ & \text{for all } \mathcal{S} \in \mathcal{S}, \text{ there is a } \mathcal{D}\text{-generic filter } \mathbb{G} \text{ over } \mathbb{P} \text{ such that } \mathcal{S}[\mathbb{G}] \text{ is a stationary} \\ & \text{subset of } \omega_1 \text{ for all } \mathcal{S} \in \mathcal{S}. \end{aligned}$

For a poset \mathbb{P} , \mathbb{P} -name S of a set of subsets of On and a filter \mathbb{G} on \mathbb{P} , let

(0.7)
$$\begin{split} & \tilde{S}(\mathbb{G}) = \{ b : b = \{ \alpha \in \mathsf{On} : \mathbb{D} \mid \models_{\mathbb{P}} ``\check{\alpha} \varepsilon \underline{s}" \text{ for a } \mathbb{D} \in \mathbb{G} \} \text{ for a } \mathbb{P}\text{-name } \underline{s} \\ & \text{ such that } \mid \models_{\mathbb{P}} ``\underline{s} \varepsilon \underline{S} \text{ and } \sup(\underline{s}) \equiv \sup(b)" \}. \end{split}$$

Note that if \mathbb{G} is a (V, \mathbb{P}) -generic filter, then $S(\mathbb{G}) = S[\mathbb{G}]$.

For uncountable cardinals μ and $\kappa > \aleph_1$, let $\mathsf{MA}^{++\mu}(\mathcal{P}, <\kappa)$ be the strengthening of $\mathsf{MA}^{+\mu}(\mathcal{P}, <\kappa)$ defined by:

 $\begin{aligned} \mathsf{MA}^{++\mu}(\mathcal{P}, <\kappa): & \text{For any } \mathbb{P} \in \mathcal{P}, \text{ any family } \mathcal{D} \text{ of dense subsets of } \mathbb{P} \text{ with } |\mathcal{D}| < \kappa \text{ and} \\ & \text{any family } \mathcal{S} \text{ of } \mathbb{P}\text{-names such that } |\mathcal{S}| \leq \mu \text{ and } \Vdash_{\mathbb{P}} ``\mathcal{S} \text{ is a stationary subset of} \\ & \mathcal{P}_{\eta_{\widetilde{\Sigma}}}(\theta_{\widetilde{\Sigma}})" \text{ for some } \omega < \eta_{\widetilde{\Sigma}} \leq \theta_{\widetilde{\Sigma}} \leq \mu \text{ with } \eta_{\widetilde{\Sigma}} \text{ regular, for all } \mathcal{S} \in \mathcal{S}, \text{ there is a} \\ & \mathcal{D}\text{-generic filter } \mathbb{G} \text{ over } \mathbb{P} \text{ such that } \mathcal{S}(\mathbb{G}) \text{ is stationary in } \mathcal{P}_{\eta_{\widetilde{\Sigma}}}(\theta_{\widetilde{\Sigma}}) \text{ for all } \mathcal{S} \in \mathcal{S}. \end{aligned}$

Clearly $\mathsf{MA}^{++\omega_1}(\mathcal{P}, <\kappa)$ is equivalent to $\mathsf{MA}^{+\omega_1}(\mathcal{P}, <\kappa)$.

Theorem 0.4 (Theorem 6.7 in [2]) For an arbitrary class \mathcal{P} of posets, if $\kappa > \aleph_1$ is a Laver-generically supercompact for \mathcal{P} , then $\mathsf{MA}^{++\mu}(\mathcal{P}, <\kappa)$ holds for all $\mu < \kappa$.

For principles "SDLS \cdots " mentioned below, see [1] and [2].

Theorem 0.5 (Theorem 6.9 in [2]) (1) Suppose that κ is Laver-generically supercompact for σ -closed posets. Then $2^{\aleph_0} = \aleph_1$, $\kappa = \aleph_2$, $\mathsf{MA}^{+\omega_1}(\sigma\text{-closed})$ and hence also $\mathsf{SDLS}(\mathcal{L}_{stat}^{\aleph_0}, < \aleph_2)$ holds.

(2) Suppose that κ is Laver-generically supercompact for proper posets. Then $2^{\aleph_0} = \kappa = \aleph_2$, $\mathsf{PFA}^{+\omega_1}$ and hence also $\mathsf{SDLS}^{-}(\mathcal{L}^{\aleph_0}_{stat}, < 2^{\aleph_0})$ holds.

(3) Suppose that κ is Laver-generically supercompact for ccc posets. Then $2^{\aleph_0} \geq \kappa$ and $\mathcal{P}_{\kappa}(\lambda)$ for any regular $\lambda \geq \kappa$ carries an \aleph_1 -saturated normal ideal. In particular, κ is κ -weakly Mahlo. $\mathsf{MA}^{++\mu}(\operatorname{ccc}, <\kappa)$ for all $\mu < \kappa$, $\mathsf{SDLS}^{int}(\mathcal{L}_{stat}^{\aleph_0}, <\kappa)$ and $\mathsf{SDLS}^{int}(\mathcal{L}_{stat}^{PKL}, <\kappa)$ also hold.

References

- Sakaé Fuchino, André Ottenbreit Maschio Rodrigues and Hiroshi Sakai, Strong downward Löwenheim-Skolem theorems for stationary logics, I, preprint. http://fuchino.ddo.jp/papers/SDLS-x.pdf
- [2] akaé Fuchino, André Ottenbreit Maschio Rodrigues and Hiroshi Sakai, Strong downward Löwenheim-Skolem theorems for stationary logics, II, in preparation. http://fuchino.ddo.jp/papers/SDLS-II-x.pdf